Нулем функции y = f(x) называется такое значение аргумента при котором значение функции = 0.
1) y = x² - 6x -27 ;
y=0; x² - 6x -27 = 0;
D = b² - 4ac = 6² - 4*1*(-27) = 36 + 108 = 144 = 12²;
x₁ = (-b + √D)/2a = (6 + 12)/2 = 18/2 = 9;
x₂ = (-b - √D)/2a = (6 - 12)/2 = -6/2 = -3;
Нулями функции y = x² - 6x -27 являются значения x₁ = 9; x₂ = -3;
2) y = x² - 5x +8;
y = 0; x² - 5x +8 = 0;
D = b² - 4ac = 5² - 4*1*8 = 25 - 32 = -7; D<0.
Дискриминант меньше нуля. Квадратное уравнение не имеет корней. Функция y = x² - 5x +8 не имеет нулей.
Changes made to your input should not affect the solution:
(1): "c2" was replaced by "c^2". 2 more similar replacement(s).
7.1 Find the Least Common Multiple
The left denominator is : a-b
The right denominator is : b-c
Least Common Multiple:
(a-b) • (b-c)
7.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = b-c
Right_M = L.C.M / R_Deno = a-b
7.3 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
7.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
8.1 Find the Least Common Multiple
The left denominator is : (a-b) • (b-c)
The right denominator is : c-a
Least Common Multiple:
(a-b) • (b-c) • (c-a)
8.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = c-a
Right_M = L.C.M / R_Deno = (a-b)•(b-c)
8.3 Rewrite the two fractions into equivalent fractions
8.4 Adding up the two equivalent fractions
Processing ends successfully