М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nalasinskaya
Nalasinskaya
01.01.2022 05:47 •  Алгебра

5/8 пути автомобиль ехал со скоростью 50 км/ч но затем был задержан на 8 минут а поэтому чтобы прибыть в конечный пункт вовремя оставшуюся часть пути автомобиль ехал со скоростью 60 километров в час найдите путь пройдённый автомобилем до задержки

👇
Ответ:
innassss
innassss
01.01.2022
Решение смотри на фото
5/8 пути автомобиль ехал со скоростью 50 км/ч но затем был задержан на 8 минут а поэтому чтобы прибы
4,8(67 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
01.01.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
nastyagru1
nastyagru1
01.01.2022
Квадратные уравнения решаются очень легко.
Самый классический их решения, через дискриминант.

Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).

Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.

В общем виде, квадратное уравнение выглядит так:
ax^2+bx+c=0

При этом a \neq 0, так как уравнение обращается в линейное.

Поначалу находят дискриминант:
D=b^2-4ac
Если D\ \textless \ 0 уравнение не имеет решений (вообще имеет, но это в школе не проходят).
Если  D=0 то уравнение имеет 1 решение (корень).
Если D\ \textgreater \ 0- уравнение имеет 2 корня.

После того как ты нашел сам дискриминант, используешь следующую формулу:
x_{1,2}= \frac{-b\pm \sqrt{D} }{2a}

Если не понятно.
То вот:
x_1= \frac{-b+ \sqrt{D} }{2a}
x_2= \frac{-b- \sqrt{D} }{2a}
4,6(58 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ