S(3)=(2a1+2d)*3/2=15; |*2 (2a1+2d)*3=30; |:3 2a1+2d=10; |:2 (1) a1+d=5; - первое уравнение системы Составим второе уравнение системы: a2=a1+d; a3=a1+2d; a1²+(a1+d)²+(a1+2d)²=93; a1²+(a1²+2a1*d+d²)+(a1²+4a1*d+4d²)-93=0; (2) 3a1²+5d²+6a1*d-93=0; - второе уравнение системы Из (1) выражаем а1 и подставляем в (2): (1) а1=5-d; (2) 3(5-d)²+5d²+6(5-d)*d-93=0; 3(25-10d+d²)+5d²+30d-6d²-93=0; 75-30d+3d²+5d²+30d-6d²-93=0; 2d²-18=0; 2d²=18; d²=9; d=-3 или d=3. Если d=-3, то a1=5-d=5-(-3)=5+3=8; Если d=3, то a1=5-d=5-3=2. ответ: a1=8 и d=-3 или a1=2 и d=3.
y(3) = 3³ - 9*3² + 24*3 - 1= 27 - 81 + 72 - 1= 17
y(6) = 6³ - 9*6² + 24*6 - 1= 216 - 324 + 144 - 1 = 35
2) Найдём критические точки, принадлежащие этому отрезку, для этого найдём производную и приравняем её к нулю:
y' = (x³ - 9x² + 24x - 1)' = 3x² - 18x + 24
3x² - 18x + 24 = 0
x² - 6x + 8 = 0
x₁ = 4 x₂ = 2 - по теореме, обратной теореме Виетта.
x = 2 - не подходит так как не принадлежит отрезку [3 ; 6]
3) Найдём значение функции в критической точке x = 4:
y(4) = 4³ - 9*4² + 24*4 - 1= 64 - 144 + 96 - 1 = 15
4) Сравним значения функции на концах отрезка и в критической точке. Наибольшее число будет наибольшим значением функции, а наименьшее - наименьшим значением функции.
Наибольшее значение равно 35, а наименьшее 15.