4 (м) ткани на 1 платье.
2 (м) ткани на 1 юбку.
Объяснение:
На изготовление четырех платьев и пяти юбок израсходовали двадцать шесть метров ткани, а на изготовление шести платьев и четырех юбок израсходовали тридцать два метра ткани. Сколько ткани потребуется на пошив одного платья и сколько ткани потребуется на пошив одной юбки?
х - ткани на 1 платье
у - ткани на 1 юбку
Согласно условию задачи составляем систему уравнений:
4х+5у=26
6х+4у=32
Разделим второе уравнение на 4 для упрощения:
4х+5у=26
1,5х+у=8
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=8-1,5х
4х+5(8-1,5х)=26
4х+40-7,5х=26
-3,5х=26-40
-3,5х= -14
х= -14/-3,5
х=4 (м) ткани на 1 платье.
у=8-1,5х
у=8-1,5*4
у=8-6
у=2 (м) ткани на 1 юбку.
Проверка:
4*4+5*2=26
6*4+4*2=32, верно.
Первое уравнение системы:
x²+y²=a
это уравнение окружности с центром в начале координат. Значение a задает радиус окружности.
Второе уравнение системы:
xy=1
это гипербола y=1/x, лежащая в 1 и 3 координатных четвертях. Самые близкие к началу координат точки, принадлежащие этому графику - (1;1)
и (-1;-1)
Рассмотрим три случая:
1)
a таково, что окружность проходит через точки (-1;-1) и (1;1), следовательно система имеет 2 решения. Найдем a.
По теореме Пифагора из прямоугольного треугольника с катетами равными 1, гипотенуза=радиус=√(1²+1²)=√2 ⇒ a=√2²=2
При a=2 система имеет 2 решения
2)
а таково, что окружность не пересекает гиперболу y=1/x. это произойдет в том случае, если радиус меньше двух.
При a∈[0;2) система не имеет решений
3)
а таково, что окружность пересекает гиперболу в 4 точках. это произойдет, если радиус больше двух.
При a∈(2;+∞) система имеет 4 решения
Графики для каждого случая приложены для наглядности.