Предприятие получило за два года снизить на 51 % объем выпускаемой продукции. каждый год требуется снижать объем на одно и то же число процентов. на сколько?
Пусть снижение ежегодно на х процентов тогда после двух лет снижения преприятие должно выпускать (1-x/100)^2 процентов продукции, что по условию 1-51=49 (1-x/100)^2=49/100 100-x=70 x=30 ответ на 30%
Я учусь по учебнику Мордковича (алгебра и начала анализа 10 класс, профильный уровень). 1) 2sinx+1=0 2cosx-\/3=0
sinx=-1/2 cosx=\/(3)/2
x=-п/6+2пn, n - целое число х=-5п/6+2пk, k - целое число х=п/6+2пl, l - целое число х=5п/6+2пq, q - целое число
х=п/6+пn x=-п/6+пk
2) tgx=t, t не равно п/2+пn, n - целое число 3t^3-2t-1=0 (t-1)(3t^2+3t+1)=0 (1) t=1 (2) 3t^2+3t+1=0 D=9-12<0 уравнение не имеет корней в действительных чистах t=1 tgx=1 x=п/4+пk, k - целое число
3) (1) cos6x=0, cos2x не равно 0 6х=п/2+пn, n - целое число х=п/12+пn/6 x не равно п/4+пk/2, k - целое число x=п/12+пm/6, m - целое число, неравно 3k+1
4) sin3x=0 2cosx-\/2=0
3x=пn, n - целое число cosx=\/(2)/2
x=пn/3 x=п/4+2пk, k - целое число х=-п/4+2пm, m - целое число
1. Самое универсальное правило состоит в том, что всякие такие тригонометрические уравнения приводятся к виду (на примере sin, можно брать любую из функций, предложенных в задании): sin(ax+-b)=c. 2. После первого шага в зависимости от того, что за функция (sin, cos, tg, ctg) слева оставляется один аргумент, то есть ax+-b 3. После второго шага путём домножений/делений, сложений/вычитаний оставляется только Х. 4. Из всех полученных решений консолидируется финальное (например, убираются дублирующие корни или проверка на ОДЗ). Примеры во вложении, описанные шаги помечены точками (но не во всех присутствуют все 4).
тогда после двух лет снижения преприятие должно выпускать
(1-x/100)^2 процентов продукции, что по условию 1-51=49
(1-x/100)^2=49/100
100-x=70
x=30 ответ на 30%