1) скорее всего в задании опечатка: sin52'cos22'-cos52'sin22'=sin(52-22)=sin30=0.5
2)Преобразуйте sin4a-sin2a в произведение, по формуле разности синусов: 2cossin=2cos3α*sinα
3)Установите соответствие между тригонометрическими функциями (А-В) и их числовыми значениями(1-4), если sina=3/5 и п/2п A.cosa 1) (-1)*1/3 Б.ctga 2)(-24/25) В.sin2a 3)(-4/5) 4) 4/5
решение: п/2<α<п - угол принадлежит 2 четверти⇒ cos x отрицательный cosx= -√(1-sin²x)= -√1-9/25= -√16/25= -4/5 ctgx= sin2x=2sinx cosx= - 2=-24/25
4)Вычислите cos210' и cos15' cos210=cos(180+30)=-cos30= - cos15=cos(45-30)=cos45*cos30+sin45*sin30=
А) Пусть O – центр окружности. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла. АО – биссектриса угла BAC. AOD – прямоугольный и равнобедренный треугольник, его угол OAD равен 45°. Следовательно, угол BAC равен 90°. Б) Пусть BF = x. Согласно теореме о равенстве отрезков касательных, проведённых к окружности из одной точки, AE = AD = 5, CF = CD = 15 и BE = BF. Согласно теореме Пифагора, BC² = AC² + AB². (15 + x)² = 20² + (5 + x)². x = 10. Следовательно, BC = 25. sin ∠ABC = AC/BC = 20/25 = 4/5. S △BEF = ½ BE * BF sin ∠ABC = ½ * 10 * 10 * 4/5 = 40. ответ: 40.
2.8x+4=2.7
2.8x+4=2.7
2.8x=2.7-4
2.8x=-13
x=-13/28