Координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
Объяснение:
Решить графически систему уравнений:
у=3х
4х-у=3
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем второе уравнение в уравнение функции:
4х-у=3
-у=3-4х/-1
у=4х-3
Таблицы:
у=3х у=4х-3
х -1 0 1 х -1 0 1
у -3 0 3 у -7 -3 1
Согласно графика, координаты точки пересечения прямых (3; 9).
Решение системы уравнений (3; 9).
1) График линейной функции y = kx + b может располагаться в III и IV координатных четвертях в случае, если k = 0, а b˂0, тогда функция имеет вид y = b и проходит параллельно оси ОХ через точку (0; b).
2) При условии b = 0, а k ˃ 0, тогда функция имеет вид y = kx (прямая пропорциональность), проходит через точку (0;0) и наклонена под острым углом к положительной части оси абсцисс.
3)Не может.
4) Уравнение вида х=а - не является функцией, не может.
5)Аналогично 4) не может.
6)Как в 1), только b˃0.
1.да 2. ? 3.да 4. да 5.нет 6.нет
1^2+1*(-4)+2>0
1-4+2>0
-1>0- неверно, следовательно не является
-6^2+(-6)*0+2>0
36+2>0
38>0-верно, следовательно является
3^2+3*2+2>0
9+6+2>0
17>0-верно, следовательно является
ответ:(-6;0);(3;2)
Удачи)