(Vк+Vр) - скорость по течению, где Vк - скорость катера в стоячей воде (км/ч); Vр - скорость течения реки (км/ч).
(Vк-Vр) - скорость против течения, где Vк - скорость катера в стоячей воде (км/ч); Vр - скорость течения реки (км/ч).
Распишем уравнения для 1-ого дня:
V=S/t, следовательно:
1) 35/4=(Vк+Vр)
2) 25/4=(Vк-Vр)
Распишем уравнения для 2-ого дня:
1) 26,25/3=(Vк+Vр)
2) 18,75/3=(Vк-Vр)
Заметим что 35/4=26,25/3 и 25/4=18,75/3
Значит можно составить систему уравнений только из 2-ух уравнений.
1) 35/4=(Vк+Vр)
2) 25/4=(Vк-Vр)
Решим относительно Vр 1-ое уравнение системы:
35=4Vк+4Vр
Vр=(35-4Vк)/4
Подставим это во 2-ое уравнение системы и найдём Vк:
25=4Vк-(35-4Vк)
25+35=8Vк
60=8Vк
Vк=60/8=7,5 км/ч
Следовательно скорость реки:
Vр=(35-4*7,5)/4=1,25 км/ч
ответ: скорость катера 7,5 км/ч, а скорость течения реки 1,5 км/ч.Объяснение:
доп множитель для первой дроби 5, для второй 3, а для двойки 15
получаем
5х+40-3х+6=30
2х= -10
х= -5
2) {x=5+2y, 3(5+2y)+5y=26
{x=5+2y, 15+6y+5y=26
{x=5+2y, 11y=11
{y=1, x=7
3) y=2x-2 Задаем два значения Х и получаем два значения У.
х=0, у=-2
х=2, у=2
На координатной плоскости отмечаем две точки (0;-2) и (2;2) и получаем прямую.
Чтобы определить принадлежность точки А(-25;-52) к графику подставляем значение Х в функцию. Если У будет равно -52, то точка принадлежит графику, если не равно -52, то не принадлежит.
Т.е. у=2*(-25)-2=-50-2=-52, значит точка А принадлежит графику функции