В решении.
Объяснение:
1) Коэффициент одночлена - это дробь перед переменными, в данном случае 3/7, а степень одночлена - это сумма степеней переменных, в данном примере 5+2, значит, 7.
Определить коэффициент и степень одночлена:
3/7 х⁵у² = 3/7 и 7.
2) 3ху²+8х-7у+4ху²+2ху²+3х=
=9ху²+11х-7у.
3) аz²+bz²-bz-az+a+b=
=(аz²+bz²)-(bz+az)+(a+b)=
=z²(a+b)-z(a+b)+(a+b)=
=(a+b)(z²-z+1).
4) 3,4*10⁹ * 1200=
=3,4*10⁹ * 1,2*10³=
=3,4*1,2*10¹²=
=4,08 * 10¹².
5) Вычислить:
(1/3)⁻¹ - (-6/7)⁰ + (1/2)² : 2=
=1 : (1/3) - 1 + 1/4 : 2=
=3 - 1 + 1/8=
=2 + 1/8= 2 и 1/8.
6) В 4 раза.
Р=4а
S=а²
Если S=16а², а=4а, Р=4*4а=16а
16а:4а=4 (раза).
Раскрываем скобки. Для этого, значение перед скобками умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. То есть получаем:
2 * 1 - 2 * sin ^ 2 x = 1 - sin x;
2 - 2 * sin ^ 2 x = 1 - sin x;
Перенесем все значения выражения на оду сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
2 * sin ^ 2 x - sin x + 1 - 2 = 0;
2 * sin ^ 2 x - sin x - 1 = 0;
1) sin x = 1;
x = pi/2 + 2 * pi * n, где n принадлежит Z;
2) sin x = - 1/2;
x = (- 1) ^ n * 7 * pi/6 + pi * n, где n принадлежит Z.
Объяснение:
3x(x² + * - 2x) - 2(3x³ - 2x + 3) =
= 3x³ + 3х·* - 6x² - 6x³ + 4x - 6 =
= 3х·* - 3х³ - 6х² + 4х - 6
Первый член 3х·* должен иметь четвёртую степень, т.е. 3х нужно умножить на такой одночлен ах³ .
Упростим первый член 3х·ах³ многочлена:
3х ·ах³ = 3ах⁴
Многочлен теперь имеет вид:
3ах⁴ - 3х³ - 6х² + 4х - 6
А дальше найдём сумму его коэффициентов, которая должна быть равна 4.
3а - 3 - 6 + 4 - 6 = 4
3а = 15
а = 15 : 3
а = 5
Получим 5х³ - искомый одночлен.
ответ: нужно вставить одночлен 5х³