Первоначально общее число фруктов (яблок и груш вместе) в банке обозначаем через n , а число яблок _m. пусть выловил x штук яблок ,после число фруктов в банке стало (n-x) штук, а число яблок (m-x) . m =n*40/100 ⇔m/n =0,4 (часть) или m =0,4n , аналогично : (m-x)=(n-x) *0,2 . m - x = (n -x)*0,2 m - x =0,2n -0,2x; 0,4n -x = 0,2n -0,2x; 0,4n - 0,2n =x - 0,2x; 0,2n =0,8x; x/n =1/4 часть или 1/4 *100 =25 % . ответ : 25 %.
Число считается чётным, если чётна его последняя цифра. Имеем ряд цифр 0, 2, 3, 4, 5. Среди них чётны три цифры: 0, 2 и 4.
Начинаем расставлять цифры в четырёхзначном числе * * * * 1) Варианты расположения цифр без повторений: "Закрепляем" ноль на месте единиц - единственный вариант. На место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - любую из оставшихся двух. Получаем: 2*3*4*1=24 (числа с нулём на месте единиц)
Далее, "закрепляем" двойку на месте единиц, на место десятков можно поставить любую из оставшихся четырёх цифр, на место сотен - любую из оставшихся трёх, на место тысяч - только одно число - ноль нельзя. Получаем: 1*3*4*1=12 (чисел с двойкой на месте единиц)
Если "закрепить" четвёрку на месте единиц, получим результат, аналогичный предыдущему, т.е. 1*3*4*1=12 (см. рассуждения с двойкой)
Все полученные результаты складываем и даём ответ: 24+12+12=48 чётных чисел можно составить всего (без повторений цифр)
2) Варианты расположения цифр с повторениями: Ноль на месте единиц: 4*5*5*1 =100 вариантов Двойка на месте единиц: 4*5*5*1=100 вариантов Четвёрка на месте единиц: 4*5*5*1=100 вариантов Складываем результаты: 100+100+100=300 чётных чисел с повторениями цифр
Краткая запись решения: 1) Без повторений цифр: 2*3*4*1+1*3*4*1+1*3*4*1=24+12+12=48 2) С повторениями цифр: (4*5*5*1)*3=100*3=300
18x+27-25=0
18x=25-27
18x=-2
X= 1
-
9