ответ: 2 км/час.
Объяснение:
Дано. Катер плыл 2,3 ч по течению
и 3,5 ч против течения.
Всего он проплыл 133,9 км.
Найдите скорость течения, если
собственная скорость катера 23,5 км/ч.
Решение.
Обозначим скорость течения через х км/час.
Тогда скорость катера по течению будет 23,5+х км/час
скорость против течения --- 23,5 - х км/час.
S=vt.
Путь по течению равен
S1= (23,5+х)2.3 = 54.05 +2.3x км.
Путь против течения равен
S2=(23.5-x)3.5 = 82.25-3.5x км.
Весь путь равен 133,9 км.
Составим уравнение:
54,05+2,3х + 82,25-3,5х = 133,9;
2,3х-3,5х = 133,9-54,05-82,25;
-1,2х=-2,4;
х=2 км/час - скорость течения реки.
Не хватающий рисунок 3.21 в приложении.
1. Прямая a проходит через точки (0; 0) и (1; –1). Подставляем эти координаты в общее уравнение прямой с угловым коэффициентом y=k•x+m:
(0; 0): 0=k•0+m, то есть m=0, тогда уравнение прямой принимает вид y=k•x,
(1; –1): –1 = 1•k и отсюда k=–1.
Значит, уравнение прямой имеет вид: y = –x.
2. Прямая b проходит через точки (0; 1) и (–2; 0). Подставляем эти координаты в общее уравнение прямой с угловым коэффициентом y=k•x+m:
(0; 1): 1=k•0+m, то есть m=1, тогда уравнение прямой принимает вид y=k•x+1,
(–2; 0): 0 = –2•k+1 и отсюда k=0,5.
Значит, уравнение прямой имеет вид: y = 0,5•x+1.
3. По рисунку видно, что приближенные значения координат точки С(–0,6; 0,7).
Проверим точность аналитическим то есть находим точку пересечения прямых a и b:
Так как 2/3=0,666..., то приближённые значения совпадают с точностью 10⁻¹.