М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
какашка3748
какашка3748
17.09.2021 19:45 •  Алгебра

Найти корни уравнений 2+x=-7 -4+x=2 -x+6=3+7 x-11=-2-5 -3x=12 7x=31 -8x=-36 5(x+7)=3(2x-3) 0,2(x-2)=0,7(x+3) 3(x-2)-2(x-1)=17

👇
Ответ:
Lifeismyy
Lifeismyy
17.09.2021
2+х=-7
х=-7-2
х=-9
2+(-9)=-7
-7=-7

-4+х=2
х=2+4
х=6
-4+6=2
2=2

-x+6=3+7
-х=3+7-6
-х=4
х=-4
-(-4)+6=3+7
10=10

x-11=-2-5
х=-2-5+11
х=4
4-11=-2-5
-7=-7

-3x=12
3х=-12
х=-4
-3(-4)=12
12=12

7x=31

     31
х= —
      7

    31
7( — )=31
     7

31=31


-8x=-36
8х=36
х=4,5
-8(4,5)=-36
-36=-36

5(x+7)=3(2x-3)
5х+35=6х-9
5х-6х=-9-35
-х=-44
х=44
5(44+7)=3(2(44)-3)
255=255

0,2(x-2)=0,7(x+3)
0,2х-0,4=0,7х+2,1
0,2х-0,7х=2,1+0,4
-0,5х=2,5
0,5х=-2,5
х=-5
0,2(-5-2)=0,7(-5+3)
-1,4=-1,4

3(x-2)-2(x-1)=17
3х-6-2х+2=17
3х-2х=17+6-2
х=21
3(21-2)-2(21-1)=17
17=17
4,8(21 оценок)
Открыть все ответы
Ответ:
ИЩЕ6
ИЩЕ6
17.09.2021

Известно, что уравнение касательной к функции f(Х) является функция У в точке Х0, удовлетворяющая следующему условию:

У = f(Х0) + f'(Х0) * (Х - Х0).

1) Определим значение f(Х0) при Х0 = 0, если f(Х) = 2Х – Х2.

f(0) = 2 * 0 – 02.

f(0) = 0.

Теперь подсчитаем значение f'(0).

f'(Х) = 2 – 2Х.

f'(0) = 2.

У = 0 + 2 * (Х – 0).

У = 2Х.

ответ: У = 2Х это уравнение касательной к функции f(Х) = 2Х – Х2 в точке Х0 = 0.

2) Определим значение f(Х0) при Х0 = 2, если f(Х) = 2Х – Х2.

f(2) = 2 * 2 – 22.

f(0) = 0.

Теперь подсчитаем значение f'(0).

f'(Х) = 2 – 2Х.

f'(2) = -2.

У = 0 + 2 * (Х – (-2)).

У = 2Х + 4.

ответ: У = 2Х + 4 это уравнение касательной к функции f(Х) = 2Х – Х2 в точке Х0 = 2.

4,8(6 оценок)
Ответ:
Анютик200511
Анютик200511
17.09.2021

В решении.

Объяснение:

Решить неравенства:

а)х-3<0

x<3

x∈(-∞, 3);

Неравенство строгое, скобка круглая. У знаков бесконечности всегда круглая.

б)-3x>=9

-x>=3

x<= -3 знак меняется

x∈(-∞, -3];

Неравенство нестрогое, скобка квадратная.

в)8у+10<=10y-2

8y-10y<= -2-10

-2y<= -12

2y>=12 знак меняется

y>=6

y∈[6, +∞)

Неравенство нестрогое, скобка квадратная.

г)4x-7<2x-3

4x-2x< -3+7

2x<4

x<2

x∈(-∞, 2);

Неравенство строгое, скобка круглая.

д)x²+2x-8>=0

Приравняем выражение к нулю и решим как квадратное уравнение:

x²+2x-8=0

D=b²-4ac = 4+32=36        √D= 6

х₁=(-b-√D)/2a

х₁=(-2-6)/2

х₁= -8/2

х₁= -4                

х₂=(-b+√D)/2a

х₂=(-2+6)/2

х₂=4/2

х₂=2

Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -4 и х=2, отмечаем эти точки схематично, смотрим на график.  

По графику ясно видно, что у>=0 при х от - бесконечности до -4, и при х от 2 до + бесконечности, причём значения х= -4 и х=2 входят в решения неравенства, скобка квадратная.

x∈(-∞, -4]∪[2, +∞), решение неравенства.

е)-3х²+5х-2<0

Приравняем выражение к нулю и решим как квадратное уравнение:

-3х²+5х-2=0/-1

3х²-5х+2=0

D=b²-4ac = 25-24=1        √D= 1

х₁=(-b-√D)/2a

х₁=(5-1)/6

х₁= 4/6

х₁= 2/3 (≈0,7)              

х₂=(-b+√D)/2a

х₂=(5+1)/6

х₂=6/6

х₂=1

Также чертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= 2/3 (≈0,7)  и х=1, отмечаем эти точки схематично, смотрим на график.  

По графику ясно видно, что у<0 (как в неравенстве), слева и справа от значений х, то есть, решения неравенства в интервале  

х∈ (-∞, 2/3)∪(1, +∞).

Неравенство строгое, скобка круглая.

ж)(7х+14)(2х-10)>0

(7х+14)(2х-10)=0

Приравниваем скобки поочерёдно к нулю, как возможный множитель, приводящий к нулю в результате умножения:

7х+14=0

7х= -14

х= -2

2х-10=0

2х=10

х=5

Вычислили два корня. Так как уравнение квадратное, определяем интервалы решений неравенства по известной схеме.

Снова чертим СХЕМУ параболы, которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -2 и х=5, отмечаем эти точки схематично, смотрим на график.

По графику ясно видно, что у>0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале  

х∈ (-∞, -2)∪(5, +∞).

Неравенство строгое, скобка круглая.

з)(х-5)(7-х)<=0

Решаем, как предыдущее:

х-5=0

х=5

7-х=0

-х= -7

х=7

Снова чертим СХЕМУ параболы, которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= 5 и х=7, отмечаем эти точки схематично, смотрим на график.

По графику ясно видно, что у<=0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале  

х∈ (-∞, 5]∪[7, +∞).

Неравенство нестрогое, скобка квадратная.

и)x²-64>0

Решим как квадратное уравнение:

х²=64

х₁,₂=±√64

х₁,₂=±8

х₁= -8

х₂=8

Вычислили два корня. Так как уравнение квадратное, определяем интервалы решений неравенства по известной схеме.

Снова чертим СХЕМУ параболы, которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -8 и х=8, отмечаем эти точки схематично, смотрим на график.

По графику ясно видно, что у>0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале  

х∈ (-∞, -8)∪(8, +∞).

Неравенство строгое, скобка круглая.

4,6(67 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ