В решении.
Объяснение:
Решить системы уравнений:
1)8у-х=4
2х-21у=2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
-х=4-8у
х=8у-4
2(8у-4)-21у=2
16у-8-21у=2
-5у=10
у=10/-5
у= -2;
х=8у-4
х=8*(-2)-4
х= -20.
Решение системы уравнений (-20; -2).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2)2х-у=0,5
8х-5у=13
Выразить у через х в первом уравнении, подставить выражение во второе уравнение и вычислить х:
-у=0,5-2х
у=2х-0,5
8х-5(2х-0,5)=13
8х-10х+2,5=13
-2х=10,5
х=10,5/-2
х= -5,25;
у=2х-0,5
у=2*(-5,25)-0,5
у= -10,5-0,5
у= -11;
Решение системы уравнений (-5,25; -11).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
3)4u+3v=14
5u-3v=25
Разделить первое уравнение на 4 для упрощения:
u+0,75v=3,5
5u-3v=25
Выразить u через v в первом уравнении, подставить выражение во второе уравнение и вычислить v:
u=3,5-0,75v
5(3,5-0,75v)-3v=25
17,5-3,75v-3v=25
-6,75v=7,5
v=7,5/-6,5 (нацело не делится)
v=7 и 5/10 : (-6 и 3/4)
Перевести дроби в неправильные:
v=75/10 : (-27/4)
v= -(75*4)/(10*27)
v= -10/9;
u=3,5-0,75v
u=3,5-0,75*(-10/9)
u=3 и 1/2-3/4*(-10/9)
u=3 и 1/2 + 5/6
u=4 и 1/3
u=13/3.
Решение системы уравнений (-10/9; 13/3).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
4)10p+7q= -2
2p-22=5q
Разделить первое уравнение на 10 для упрощения:
p+0,7q= -0,2
2p-22=5q
Выразить p через q в первом уравнении, подставить выражение во второе уравнение и вычислить q:
p= -0,2-0,7q
2(-0,2-0,7q)-22=5q
-0,4-1,4q-22=5q
-1,4q-5q=22,4
-6,4q=22,4
q=22,4/-6,4
q= -3,5;
p= -0,2-0,7q
p= -0,2-0,7*(-3,5)
p= -0,2+2,45
p= 2,25.
Решение системы уравнений (2,25; -3,5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
sin2x - (1-sin²x) =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.
2) ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0 * * *cos2x = ± 1 ≠0→ ОДЗ * * *
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .
3) ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.
4) ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ; * * * α = 3x * * *
cos3x = 2cos²3x ;
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.