Задание 2:
{2x+7y=38|*3 {6x+21y=114
{6x-4y=-11 {6x-4y=-11
Вычтем из первого уравнения второе:
21y-(-4y)=114-(-11)
25y=125
y=5
Подставим полученное значение во второе уравнение:
6x-4*5=-11
6x-20=-11
6x=9
x=1,5
ответ:(1,5;5)
Задание 3:
y=kx+b
Составим систему уравнений, подставив в формулу прямой соответствующие значения абцисс и ординат точек:
{k+b=-2,5
{-2k+b=12,5
Вычтем из первого уравнения второе:
k-(-2k)=-2,5-12,5
3k=-15
k=-5
Подставим полученное значение в первое уравнение:
-5+b=-2,5
b=2,5
Итоговая формула:
y=-5x+2,5
6Sin x - 18 Cos x = √360
6Sin x - 18 Cos x = 6√10
12Sinx/2Cosx/2 -18(Cos²x/2 - Sin²x/2) = 6√10*1
12Sinx/2Cosx/2 -18Cos²x/2 +18 Sin²x/2 = 6√10*(Sin²x/2 + Сos²x/2)
12Sinx/2Cosx/2 -18Cos²x/2 +18 Sin²x/2 - 6√10*Sin²x/2 -6√10 Сos²x/2 = 0
2Sinx/2Cosx/2 - 3Cos²x/2 +3Sin²x/2-√10*Sin²x/2 -√10 Сos²x/2 = 0|:Сos²x/2
2tgx/2 -3 +3tg²x/2 -√10tg²x/2 -√10 = 0
tgx/2 = t
(3 - √10)t² +2t - (3 +√10) = 0
t = (-1 +-√(1 +9 -10))/(3 -√10) = -1/(3 -√10) = 3 +√10
tgx/2 = 3 +√10
x/2 = arctg(3 +√10) + πk , k ∈Z
x = 2arctg(3 +√10) +2πk , k ∈Z
Область определения функции
Для каждой точки
- функция имеет предел при
- этот предел равен значению функции в точке
Значит, функция непрерывна на всей области определения. Точек разрыва нет.
2.
Область определения функции
Точка разрыва
Оба односторонних предела бесконечны.
3.
Область определения функции
По аналогии с первой функцией: функция непрерывна на всей области определения. Точек разрыва нет.