нет, нельзя
Объяснение:
Очевидно, что производя наши действия, мы не можем получить трехзначное число. Действительно, если мы получим 3-х значное число, нам ни как его не уменьшить до двузначного: умножение на 2 его только будет увеличивать, а разрешенной перестановкой из трехзначного нельзя получить двузначное.
Итак, будем умножать 1 на 2 пока не получим первое двузначное число. как только мы его получим, то в дополнение к умножению на 2 мы можем пользоваться перестановкой.
1) 1*2*2*2*2=16
теперь на надо решить умножать его дальше на 2 или переставить цифры.
Допусим мы переставим цифры и получим 61. Если мы умножим его на 2, то получим 3-х значное число, что нам не подходит. Значит надо прододить умножать 16 дальше.
2) 16*2=32
Опять начнем с прерстановки. 23. Умножим на 2, получим 46
2а) перестановка 46 нам даст 64 и дальнейше уменжение приведет опять к 3-х значному числу.
2б) 46*2=92. Перестановка. 29. Умножаем на 2. 58. перестановка 85. опять тупик.
3) 32*2=64. мы этот случай уже рассмотрели в варианте 2а)
Болше вариантов не осталось.
ответ: нет, нельзя
Итак, пусть скорость пешехода х(км/ч), тогда скорость велосипедиста х+8(км/ч).
U=x(км/ч) __> 10км <___U=x+8(км/ч)
A<^>B
Пешеход до встречи 10 км, а велосипедист 34-10=24 км. 30 минут это 1/2 часа. До того как велосипедист начал движение пешеход уже пошёл путь равный 1/2х. Дальше, время потраченное на путь до места встречи у них одинаковое, значит пешеход до места встречи х)/х часа, а велосипедист 24\(х+8) часа.
Составим уравнение:
(10-1/2х)/х = 24\(х+8)
24х = (х+8)*(10-1\2х)
24х = 10х-1\2х²+80-4х
24х = -1/2х²+6х+80
1/2х²+18х-80 = 0
х²+36х-160 = 0
D=1296+640=1936=44²
х1 = -40км/ч <-- это решение не удовлетворяет условию задачи, так как скорость не может быть отрицательной.
х2= 4км/ч
Если скорость пешехода 4км/ч, тогда скорость велосипедиста 4+8=12км/ч.
ответ: 12км/ч.
=)...€∫∫