Объяснение:
1) f(x)=2e^x+3x² f'(x)=2e^x+6x
2) f(x)= x sinx. f'(x)= sinx+xcosx
3) у = (3х – 1)(2 – х) y'=3(2 – х)+(3х – 1)×(-1)=6-3x-3x+1=-6x+7
4) y=9x²-cosx y'= 18x+sinx
5) y=e^x-x^7 y'= e^x-7x^6
7) f '(1), f(x)=3x2-2x+1. f'(x)=6x-2; f'(1)=6-2=4
8) у = х²(3х^5 – 2) ; х0 = – 1. у' =(3x^7-2x²)'=21x^6-4x
y'(-1)=21+4=25
9) f '( ), f(x)=(2x-1)cosx=2cosx-(2x-1)sinx
10) f '(1), f(x)=(3-x²)(x²+6)= -2x(x²+6)+2x(3-x²) = -4x³ -6x
11) f '(1), f(x)=(x^4-3)(x²+2), f'(x)=3x³ (x²+2)+2x(x^4-3)=5x^5+6x³-6x
На выполнение заказа потребовалось 7 дней
Объяснение:
Производительность первой бригады составляет 3 единицы в день.
Производительность второй бригады составляет 9 единицы в день.
К концу 4- го дня, объем работы выполненный первой бригадой оценивается в 12 единиц, а второй в 36 единиц. Разница составила 24 единицы.
Начиная с пятого дня, производительность первой бригады составляет уже 10 единиц в день, а второй 2 единицы в день.
С этого момента представим график, где оси X соответствует количество дней, а оси Y объем выполненной работы, начиная с пятого дня. График первой бригады начинается в точке (0;0) и каждое последующее значение у больше значения x в 10 раз. График второй бригады начинается в точке (0;24) и каждое последующее значение у больше значения x в 2 раза.
В виде системы линейных уравнений это будет выглядеть следующим образом:
y=2x+24
y=10x
10x=2x+24
8x=24
x=3
То есть через три дня обе бригады одновременно достигнут равного объема выполненной работы.
Итого: 4+3=7 дней.
вот ответ)))))))))))))))
Объяснение:
х+1 не должно равняться нулю, потому что на ноль делить нельзя