С3, неплохо log(6-x, (x-6)^2/(x-2)) >= 2 ОДЗ: (x-6)^2/(x-2) >0 => (2;6) U (6;+oo) 6-х =\= 1 => x=\=5 6-x>0 => (-oo;6) общий промежуток: (2;5) U (5;6) Пользуемся правилом разности логарифмов log(6-x, (x-6)^2) - log(6-x, x-2) >=2 2log(6-x, |x-6|)-log(6-x, x-2)>=2 -log(6-x, x-2)>=0 log(6-x, x-2)<=0 1. 6-x C (0;1) 6-x>0 => 6<x 6-x<1 => x>5 общий промежуток (5;6) меняем знак неравенства x-2>=1 x>=3 общее решение (5;6) 2. 6-x C (1;+oo) 6-x>1 => x<5 x-2<=1 x<=3 общее решение (-oo;3] С учетом ОДЗ (2;3] U (5;6)
(x^2-x-14)/(x-4) + (x^2-8x+3)/(x-8) <= 2x+3 Здесь можно не побрезговать и тупо привести к общему знаменателю (x^2-x-14)(x-8)+(x^2-8x+3)(x-4)-(2x-3)(x-4)(x-8) / (x-4)(x-8) <=0 После всех подсчетов остается (x+4)/((x-4)(x-8))<=0 методом интервалов x<=-4; x C (4;8)
1) Обозначим скорости велов v1 и v2, время до встречи t (оно одинаковое у обоих), а расстояния, которые они проехали до встречи S1 и S2. До встречи 1-ый проехал такое расстояние, которое 2-ой проехал за 1,5=3/2 ч. S1=v1*t=v2*3/2 v1/v2=3/(2t) А 2-ой проехал такое, которое 1-ый проехал за 40 мин = 2/3 ч. S2=v2*t=v1*2/3 v1/v2=t:(2/3)=t*3_2=3t/2 Получаем v1/v2=3/(2t)=3t/2 Отсюда, разделив на 3/2: 1/t=t=1 ч. До встречи они оба ехали 1 ч. Отношение скоростей v1/v2=3/2. ответ А) в 1,5 раза. 2) x^2 - 2√(x^2+2x) = 3 - 2x x^2+2x + 2√(x^2+2x) - 3 = 0 Замена y=√(x^2+2x)>0 при любом х, потому что √ арифметический. y^2-2y-3=0 (y-3)(y+1)=0 Подходит только y=3 √(x^2+2x)=3 x^2+2x=9 x^2+2x-9=0 D=4-4*1*(-9)=40=(2√10)^2 x1=(-2-2√10)/2=-1-√10 x2=-1+√10 ответ: Б) -1+-√10