М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sheidpavla
sheidpavla
14.09.2020 23:30 •  Алгебра

Tg(-7pi/6)? ctg5pi/4? . sin t =3/5,pi/2

👇
Ответ:
vlad97vb
vlad97vb
14.09.2020
tg (-\frac{7\pi }{6})=-tg\frac{x\7\pi }{6}=-tg(\pi +\frac{\pi }{6} )=-tg \frac{\pi }{6} =- \frac{\sqrt3}{3} \\\\\\ctg \frac{5\pi }{4}=ctg(\pi +\frac{\pi }{4})=ctg\frac{\pi }{4}=1\\\\\\sint=\frac{3}{5}\; \; \to \; \; \; t=(-1)^{n}arcsin\frac{3}{5} +\pi n\; ,\; n\in Z
4,7(32 оценок)
Открыть все ответы
Ответ:
Motcic
Motcic
14.09.2020
Для поиска корней всех уравнений пользуйся формулой дискриминанта:
ax^2 + bx +с =0
D= b^2 -4ac.
x1,2=(-b+-корень из D)/(2а).
Получаем:
x^2-3x+2 = 0
D=9-8=1, корень из D= 1.
x1 = (3+1)/2= 2
x2 = (3-1)/2 = 1
x^2 -3x -2 =0
D=9+8 = 17, корень из D= корень из 17 (буду писать кор17).
x1=(3+кор17)/2
x2 = (3-кор17)/2
X^2+x-12=0
D=1+48 = 49, корD=7
x1 = (-1+7)/2=3
x2 = (-1-7)/2 = -4
x^2-2x-35 = 0
D=4+140=144, корD=12
x1 =(2+12)/2=7
x2=(2-12)/2=-5
x^2+5x-4 = 0
D=25+16=41, корD=кор41
x1=(-5+кор41)/2
x2= (-5-кор41)/2
X^2+5x-36=0
D=25+144=169, корD=13
x1 = (-5+13)/2 = 4
x2 = (-5-13)/2 = -9
4,4(67 оценок)
Ответ:
vovakornev2002
vovakornev2002
14.09.2020
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
4,8(64 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ