В решении.
Объяснение:
Для квадратного трехчлена x² + 14x + 13 = 0
a) выделите полный квадрат .
Для выделения полного квадрата суммы в выражении не хватает квадрата второго числа. Судя по удвоенному произведению первого числа на второе 14х, второе число равно 7, а квадрат его=49.
(х² + 14х + 49) - 49 + 13 = 0
49 добавили, 49 и отнять.
Свернуть квадрат суммы:
(х + 7)² - 36 = 0.
b) разложите квадратный трехчлен на множители.
Найти корни уравнения:
(х + 7)² - 36 = 0
(х + 7)² = 36
Извлечь корень из обеих частей уравнения:
х + 7 = ±√36
х + 7 = ±6
х₁ = 6 - 7
х₁ = -1;
х₂ = -6 - 7
х₂ = -13.
Разложение:
x² + 14x + 13 = (х + 1)*(х + 13).
а) начиная с n = 22; б) начиная с n = 39
Объяснение:
а) a₁ = 2; a₂ = 1.9; a₃ = 1.8 ... A=0
Разность арифметической прогрессии d = a₂ - a₁ = 1.9 - 2 = - 0.1
aₙ < 0
aₙ = a₁ + d · (n - 1)
a₁ + d · (n - 1) < 0
2 - 0.1 · (n - 1) < 0
2 - 0.1n + 0.1 < 0
0.1n > 2+0.1
0.1n > 2.1
n > 21
Наименьший номер n = 22
б) a₁ = 15,9; a₂ = 15,5; a₃ = 15,1 ... A = 0,9
Разность арифметической прогрессии d = a₂ - a₁ = 15,5 - 15,9 = - 0.4
aₙ < 0,9
aₙ = a₁ + d · (n - 1)
a₁ + d · (n - 1) < 0,9
15,9 - 0.4 · (n - 1) < 0,9
15,9 - 0.4n + 0.4 < 0,9
0.4n > 15,9 + 0.4 - 0,9
0.4n > 15,4
n > 38,5
Наименьший номер n = 39
б)-8; 26; -16
в) 1/3; 3,6; -0,25