1)
Найдем вероятность того, что неисправны оба автомата.
0,15*0,15=0,0225
Тогда вероятность того, то оба банкомата будут работать
1-0,0225=0,9775
2)
0,95-0,89=0,06
3)
У куба 6 граней
Всего 3 четных числа и 3 нечетных
Вероятность того, что выпадет четное число: 1/3
Вероятность того, что выпадет нечетное число: 1/3
Вероятность того, что на одном выпадет четное, а на другом нечетное:
1/3*1/3=1/9≈0,11
4)
Найдем вероятность того, что последние два выстрела он попал
0,8*0,8=0,64
Вероятность того, что при первом выстреле он попадет - 0,8
Вероятность того, что он промазал при 2 выстреле - 0,2
Перемножаем
0,8*0,2*0,64=0,1024
5)
Всего карандашей в коробке 35
Найдем кол-во красных и желтых
(35-5-4-8):2=9
Желтых и красных карандашей в коробке 9
Вероятность того, что вытащят синий карандаш:
5/35
Вероятность того, что вытащат желтый карандаш:
9/35
Вероятность того, что наудачу вытянутый карандаш будет синим или желтым:
5/35+9/35=14/35=0,4
6)
суммарная вероятность несовместных событий равна сумме вероятностей этих событий
0,3+2,5=0,55
Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп[1].
Один из примеров группы — множество целых чисел, снабжённое операцией сложения: сумма любых двух целых чисел также даёт целое число, роль нейтрального элемента играет ноль, а число с противоположным знаком является обратным элементом. Другие примеры — множество вещественных чисел с операцией сложения, множество вращений плоскости вокруг начала координат. Благодаря абстрактному определению группы через систему аксиом, не привязанной к специфике образующих множеств, в теории групп создан универсальный аппарат для изучения широкого класса математических объектов самого разнообразного происхождения с точки зрения общих свойств их структуры. Вездесущность групп в математике и за её пределами делает их важнейшей конструкцией в современной математике и её приложениях.
Группа фундаментально родственна понятию симметрии и является важным инструментом в изучении всех её проявлений. Например, группа симметрии отражает свойства геометрического объекта: она состоит из множества преобразований, оставляющих объект неизменным, и операции комбинирования двух таких преобразований, следующих друг за другом. Такие группы симметрии, как точечные группы симметрии понять явление молекулярной симметрии в химии; группа Пуанкаре характеризует симметрию физического пространства-времени, а специальные унитарные группы применяются в стандартной модели физики элементарных частиц[2].
Понятие группы ввёл Эварист Галуа, изучая многочлены в 1830-е годы[3].
Современная теория групп является активным разделом математики[4]. Один из наиболее впечатляющих результатов достигнут в классификации простых конечных групп, которая была завершена в 1981 году: доказательство теоремы составляет десятки тысяч страниц сотен научных статей более ста авторов, опубликованных с 1955 года, но статьи продолжают появляться из-за обнаруживаемых пробелов в доказательстве[5]. С середины 1980-х годов значительное развитие получила геометрическая теория групп, изучающая конечно-порождённые группы как геометрические объекты.
2.88
Может и не точно