2) 4y^2 - 9y+48=0 D = 81-768=- 687 действительных корней нет 1) 4y^2 - 25y + 100=0 D = 625-1600, D<0 действительных корней нет 3) из условия знаменателя: х не равен -3 и 1/2. Далее по условию равенства нулю дроби: (x+3)(x-2)=0 x+3=0 или x-2=0 x=-3 x=2 ответ: 2 (так как -3 не подходит по условию знаменателя) 4) Приведем к общему знаменателю: (16(x^2-9)+x^2(x-6)-x^2(x+3))/(x^2(x^2-9)) = 0 x не равен 0, 3 и - 3 16(x^2-9)+x^2(x-6)-x^2(x+3)=0 16x^2-144+x^3-6x^2-x^3-3x^2=0 7x^2=144 x1=12/√7 x2=- 12/√7
Сразу заметим, что f(x) - непрерывна и не имеет асимптот. Найдем ее промежутки возрастания и убывания. f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4) Нули производной: x=3, x=3/4. f'(x) + - - 3/4 3 >x f(x) возрастает убывает убывает Отсюда следует, что максимум функции достигается при x=3/4. При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4) f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64 m<729/64
x1+x2=-4
x1*x2= -6