Пусть х(км/ч) -скорость течения реки.
у(км/ч) -собственная скорость катера.
Тогда скорость катера по течению реки равна (х+у) км/ч,
а против течения (у-х) км/ч.
По условию по течению катер км), т.е. 5/3 х +5/3 у(км),
а против течения 24(км), т. е. 1,5 у -1,5 х (км).
(5/3 - это 1час 20мин.)
5/3 х +5/3 у =28 домножим на 3
1,5 у-1,5 х=24 домножим на 10
5х+5у=84
15у-15х=240 разделим на 3
5х+5у=84
5у-5х=80
Решим систему сложения двух уравнений:
10у = 164
5у-5х = 80
5у - 5х = 80
у = 16,4
5*16,4 - 5х = 80
у=16,4
-5 х = 80-82
у = 16,4
-5 х = -2
у = 16,4
х = 0,4
у = 16,4
ответ: 0,4 (км/ч) - скорость течения реки
Исследуйте функцию и постройте график y= 8x³ - x⁴ .
y = x³ (8- x)
1. D(y ) : x∈(-∞; ∞) * * * Область Определения Функции →ООФ * * *
2. Ни четная , ни нечетная , ни периодическая .
3. Пересечения с осями координат: (0 ;0) , (8, 0) .
4.Определим интервалы знакопостоянства функции
y = x³ (8- x)
" - " " + " " - " 0 8 нули функции : x =0 и x =8 .
y < 0 ,если x ∈ (-∞ ; 0 ) ∪ ( 8 ; ∞) .
y > 0 ,если x ∈ (0 ; 8) .
5. Определим промежутки монотонности и точки экстремума:
y '=( 8x³- x⁴) ' =( 8x³) ' - (x⁴ ) ' =8(x³) ' -4x³ =8*3x²-4x³ =24x²- 4x³ =4x²(6 -x).
y ' " + " "+ " " - " 0 6
у ↑ ↑ max ↓
Функция возрастает при x ∈ (-∞ ;6] , убывает при x ∈ [ 6 ; +∞) .
у(6) =8*(6)³ - 6⁴ =(6)³ (8-6)=216*2 = 432 . (6 ; 432)_точка максимума.
Точки выпуклости и вогнутости
y '' =(y')' =(24x² - 4x³) ' = 48x -12x² =12x(4 -x).
x =0 и x =4 точки перегиба * * * y '' = 0 * * *
Выпуклый , если x ∈ ( -∞;0) и x ∈ ( 4 ;+∞) * * * y '' < 0 * * *вогнутый , если x ∈ ( 0 ;4 ) * * * y'' > 0 * * *
x→±∞ ⇒ y→ -∞ .
Таким образом характерные точки на графике
пересечение с координатными осями (0 ; 0) , (8; 0)
* * * функция положительно при x∈ (0 ; 8) * * *
точка максимума (6 ; 432) . (единственная точка экстремума)
точки перегиба :
(0 ;0 ) (от выпуклости к вогнутости) ;
(4 ; 4⁴) ⇔ (4 ; 256) (от вогнутости к выпуклости ) .