От станции до озера турист доехал на велосипеде за 2 часа.пешком он мог бы пройти это расстояние за 6 часов.чему равно расстояние от станции до озера,если на велосипеде турист едет со скоростью,на 10км/ч большей,чем идёт пешком?
X км/час- скорость пешком, (x+10) км/час- скорость на велосипеде. составляем уравнение: 6*x=2*(x+10); 6x=2x+20; 6x-2x=20; 4x=20; x=20/4=5 (км/час). S=5*6=30(км). ответ: расстояние от станции до озера 30 км.
Скорость экскурсантов после обеда снизилась на 2 км/ч, значит, после обеда они за час на 2 км меньше. Если бы они шли с прежней скоростью (как и утром), то бы расстояние на 2 км больше за всё время. 12,8 + 2 = 14,8 (км бы экскурсанты за день; 3 + 1 = 4 (часа) за это время бы 14,8 километров; 14,8 : 4 = 3,7 (км/ч) скорость экскурсантов утром; 3,7 * 3 = 11,1 (км экскурсанты утром. Если х км/ч - утренняя скорость, то х - 2 км/ч дневная скорость, а всё расстояние: х * 3 + (х - 2) * 1 = 12,8; 3х + х - 2 = 12,8; 4х = 14,8; х = 3,7; х * 3 = 3,7 * 3 = 11,7 (км). ответ: 3,7 км/ч утренняя скорость экскурсантов; 11,1 километра экскурсанты утром.