Объяснение:
№1
а) х2+5х-6=0
Д=b2-4ac=25-4*1*(-6)=25+24=49
б) 4х2-5х-4=0
Д=b2-4ac=25-4*4*(-4)=25+64=89
№2
а)х2-8х-84=0
Д=b2-4ac=64-4*1*(-84)=400.
Так как дискриминант положительный то уравнение имеет два корня.
б)36х2-12х+1=0
Д=b2-4ac=144-4*36*1=0
Так как дискриминант =0 то уравнение имеет один корень.
в)х2+3х+24=0
Д=b2-4ac=9-4*1*24=-87
Так как дискриминант отрицательный уравнение корней не имеет.
№3
а)х2-5х+6=0
Д=b2-4ac=25-4*1*6=1 Корень квадратный из Дискриминанта=1
Х1=(-b+Корень квадратный из Дискриминанта)/2a=(5+1)/2=3
X2=(-b-Корень квадратный из Дискриминанта)/2a=(5-1)/2=2
б)х2-2х-15=0
Д=b2-4ac=4-4*1*(-15)=64 Корень квадратный из Дискриминанта=8
Х1=(-b+Корень квадратный из Дискриминанта)/2a=(2+8)/2=5
X2=(-b-Корень квадратный из Дискриминанта)/2a=(2-8)/2=-3
Подготовка к ЕГЭ
Вебинары
Задать вопрос
Войти
АнонимМатематика24 сентября 07:32
Sin3x*cos3x=-1/2 sinx-sin3x+sin5x=0 решите уровнение
ответ или решение1
Стрелков Егор
1. Синус двойного угла:
sin2a = 2sina * cosa;
sin3x * cos3x = -1/2;
2sin3x * cos3x = -1;
sin6x = -1;
6x = -π/2 + 2πk, k ∈ Z;
x = -π/12 + πk/3, k ∈ Z.
2. Сумма синусов:
sina + sinb = 2sin((a + b)/2) * cos((a - b)/2);
sinx - sin3x + sin5x = 0;
(sin5x + sinx) - sin3x = 0;
2sin((5x + x)/2) * cos((5x - x)/2) - sin3x = 0;
2sin3x * cos2x - sin3x = 0;
2sin3x(cos2x - 1/2) = 0;
[sin3x = 0;
[cos2x - 1/2 = 0;
[sin3x = 0;
[cos2x = 1/2;
[3x = πk, k ∈ Z;
[2x = ±π/3 + 2πk, k ∈ Z;
[x = πk/3, k ∈ Z;
[x = ±π/6 + πk, k ∈ Z.
1) -π/12 + πk/3, k ∈ Z;
2) πk/3; ±π/6 + πk, k ∈ Z.