М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
biobiobio
biobiobio
25.12.2021 20:17 •  Алгебра

Выделить полный квадрат x^2-2x-1 пож

👇
Ответ:
ilya482
ilya482
25.12.2021
(X-1)^2
P.s.:с тебя лайк
4,4(73 оценок)
Открыть все ответы
Ответ:
den536
den536
25.12.2021

ответ ответ дан Solnishkosandra

№1.

а) 1. введу функцию у=3х^2 - 5х - 22.

2. Найду нули фунции через дискриминант:

D= 25 - 4 * 3 * (-22) = 25 + 264 = 289 , Д больше 0, 2 корня.

х1 = ( 5 - 17) / 6 = - 2; х2 = ( 5+ 17) / 6 = 3,7.

3. так как ветви параболы аправленны вверх, решение находится за корнями, то есть х принадлежит ( - бесконечность ; -2) ( 3, 7 ; + бесконечность)

в) 1. 2x^2 + 3х+ 8 = 0

2. D=9 - 4 * 2 * 8 = - 55. Д меньше 0, ветви параболы напр ввер, уравнение решения не имеет.

б) 1. х^2 = 81

х1 = 9, х2 = -9

2. так как ветви параболы направленны вверх, решение находится между корнями. то есть ответ: х принадлежит ( - 9; 9)

№2.

1.нули функции

х1=4, х2 = 1, х3= - 5

2. наносим значения на числовую прямую и

расставляем знаки

- + - +

(-5)(1)(4)> х

3. так как f(x) < 0 (по условию), то выбмраем интервалы, где знак (-), то есть ответ : х принадлежит ( - бесконечность; -5) , (1; 4)

№3

1. Введу ф-цию : 5x^2 + nx +20 = 0

2. D = n^2 - 4 * 5 * 20 = n^2 - 400.

3. Чтобы уравнение не имело корней, D должен быть меньше 0 ( так как при D<0 уравнение не имеет корней) Значит,

n^2 - 400 < 0

n^2 = 400

n1 = 20, n2 = - 20.

ответ: 20, - 20.

4,8(90 оценок)
Ответ:
14251714
14251714
25.12.2021

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

4,6(93 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ