Объяснение:
1. Обозначим скорости велосипедиста и мотоциклиста х и у соответственно.
2. Расстояние межде городами,если ехать велосипедом - 7х,
а мотоциклом - 4у. ⇒ 7х=4у.
3. Скорость мотоциклиста больше скорости велосипедиста
на 18 км/ч. ⇒ у-х=18.
Получаем систему уравнений:
{7x=4y {7x=4*(x+18) {7x=4x+72 {3x=72 |÷3 {x=24
{y-x=18 {y=x+18 {y=42.
7х=4у=7*24=4*42=168.
ответ: скорость велосипедиста 24 км/ч,
скорость мотоциклиста 42 км/ч,
расстояние между городами 168 км.
Объяснение:
1. Обозначим скорости велосипедиста и мотоциклиста х и у соответственно.
2. Расстояние межде городами,если ехать велосипедом - 7х,
а мотоциклом - 4у. ⇒ 7х=4у.
3. Скорость мотоциклиста больше скорости велосипедиста
на 18 км/ч. ⇒ у-х=18.
Получаем систему уравнений:
{7x=4y {7x=4*(x+18) {7x=4x+72 {3x=72 |÷3 {x=24
{y-x=18 {y=x+18 {y=42.
7х=4у=7*24=4*42=168.
ответ: скорость велосипедиста 24 км/ч,
скорость мотоциклиста 42 км/ч,
расстояние между городами 168 км.
х=2⁴=16
2) log₀.₂(x-4) = -2; 0,2=1/5
log₁/₅(x-4) = -2
(x-4) = (1/5)⁻²
х-4=25
х=29
3) log₅(x+1) – log₅(1-x) = log₂(2x+3) ОДЗ х> -1 ; х<1 ; х >-1,5 x∈(-1;1)
log₅(x+1) /(1-x) = log₂(2x+3)
log₅(2x+3)
log₅(x+1) /(1-x) = l
log₅ 2
ОДЗ х>0
1) log₃x > 2
x> 3²
x>9
x∈(9;+∞)
2) log₈x ≤ 1
х≤8¹
х∈(0 ;8]
3) log₀.₂x ≥ -2 0,2<1 ⇒ при решении меняем знак
log ₁/₅x ≥ -2
х≤ (1/5)⁻²
х≤ 25
х∈(0;25]