Задача 1. Можно методом подбора найти эти числа. 11- сумма 5+6 А их произведение - 30. Но если требуется вычислить их, следует составить систему: |а+b=11 |ab=30 Выразим а через b a=11-b Подставим в выражение площади: ab=(11-b)b (11-b)b=30 Получится квадратное уравнение с теми же корнями: Его решение даст тот же результат: 5 и 6. ( Вычисления давать ну буду, они простые) Задача 2) Полупериметр прямоугольника 42:2=21. Методом подбора найдем числа 7 и 14. Система: |а+b=21 |ab=98 Дальнейшее решение по схеме, данной выше. Квадратное уравнение, корни 7 и 14 Задача 3) Подбором числа в третьей задаче найти вряд ли получится, но в принципе решение ничем не отличается от предыдущих. Один катет обозначим а, второй b b=(а+41) По т.Пифагора квадрат гипотенузы равен сумме квадратов катетов. 89²=а²+(а+41)² 89²=a²+a²+82а+ 41² 2a²+82а+ 6240 а²+41а-3120=0 корни уравнения ( катеты) 39 и 80 Найти площадь прямоугольного треугольника по формуле S=ab:2 уже не составит труда.
Любое нечётное число можно записать в виде 2n-1, где n∈z (множество целых чисел). у нас три последовательных нечётных числа. каждое последующее нечётное число на 2 больше предыдущего (например, 1, 3, 5, 7 и так далее). обозначим минимальное из наших чисел 2n-1. тогда следующее будет 2n-1+2=2n+1, а последнее 2n+1+2=2n+3. эти числа в порядке возрастания расположатся, очевидно: 2n-1; 2n+1; 2n+3. по условию : (2n+1)(2n+-1)(2n+1)=76 (2n+1)(2n+3-(2n-=0 (2n+1)(2n+3-2n+1)-76=0 (2n+1)4-76=0 8n+4-76=0 8n-72=0 n=72/8 n=9 тогда искомые числа будут: 2n-1=2*9-1=18-1=17 2n+1=2*9+1=18+1=19 2n+3=2*9+3=18+3=21
15а-(а-3)+(2а-1)=15а-а+3+2а-1=16а+2