ищем определитель через разложение по 1-му столбцу:
2 1 -1
Δ₁₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₁₁ = 2*((-1)*2-1*3)-2*(1*2-1*(-1))+0*(1*3-(-1)*(-1)) = -16
минор для (2,1):
-1 0 3
Δ₂₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₂₁ = (-1)*((-1)*2-1*3)-2*(0*2-1*3)+0*(0*3-(-1)*3) = 11
минор для (3,1):
-1 0 3
∆₃₁ = 2 1 -1
0 1 2
определитель для этого минора.
∆3,1 = (-1)*(1*2-1*(-1))-2*(0*2-1*3)+0*(0*(-1)-1*3) = 3
минор для (4,1):
-1 0 3
Δ₄₁ = 2 1 -1
2 -1 3
определитель для этого минора.
∆₄₁ = (-1)*(1*3-(-1)*(-1))-2*(0*3-(-1)*3)+2*(0*(-1)-1*3) = -14
определитель матрицы
∆ = (-1)⁽¹⁺¹⁾ *1*(-16) + (-1)⁽²⁺¹⁾ *3*11 + (-1)⁽³⁺¹⁾ *1*3 + (-1)⁽⁴⁺¹⁾ *4*(-14) = 10
Сначала без х:
Площадь 1-го отреза: 18м·0,75м = 13,5м²
Площадь одной наволочки: 13,5м²:15 = 0,9м²
Площадь 22 наволочек: 0,9м²·22 = 19,8м²
Длина 2-го отреза: 19,8м²:1,2м = 16,5м
Теперь с х:
Пусть х - длина 2-го отреза, тогда площадь 2-го отреза 1,2х. Площадь одной наволочки: 1,2х: 22. Площадь наволочки, получаемая из 1-го отреза записывается выражением: 18·0,75:15.
Уравнение:
1,2х:22 = 18·0,75:15
По основному свойству пропорции:
1,2х·15 = 22 ·18·0,75
18х = 18·16,5
х = 16,5
ответ: длина 2-го отреза 16,5м
Да.
Допустим, в первый день Миша вообще не ел конфет. 0
Во второй - 1,
Во третий - 2, и так далее до
15 дня - 14 конфет
Дальше задачу можно решать 2-мя
1)Это можно записать как арифметическую прогрессию с а1=0, d=1, n=15
Тогда сумма S15=(0+14)/2*15=7*15= 105, что явно больше 100
То есть мы взяли самый благоприятный для нас вариант, но он не подходит нам
Следовательно, абсолютно точно есть 2 дня с повторяющимся количеством конфет
2)Если сложить количество всех конфет, которые сьел бы Миша за эти 15 дней, каждый день кушая разное количество, получится также 105, поэтому, повторяя заключение из 1-го варианта, ответ: да, верно