Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 18.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=18
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=18
2n+1+2n+5=18
4n=12
n=3
3; 4 и 5;16
(6²-5²)+(4²-3²)=11+7
11+7=18 - верно
если не видно:
1) 3+25х=15х+35
25х-15х=35-3
10х=32
х=3,2
2) 2х+ 6 6/3= 4 1/3 * 3
2х=13- 6 6/3
2х=6 7/3
х= 85/26=3 7/26