Ну начнем с самого неприятного и сложного: cos^2(3a/2-pi/8) тут применим понижение степени: (1+cos(3a-pi/4))/2 далее проделаем такую хитрость: cos(3a-pi/4)=cos(3*a -3*pi/4-pi/4 +3pi/4)=cos(3(a-pi/4)+pi/2)=-sin(3(a-pi/4)=sin(3*(pi/4-a))=3*sin(pi/4-a)- 4*sin^3(pi/4-a)=3*1/3 -4*1/27=1-4/27=23/27 (1+cos(3a-pi/4))/2=(1+23/27)/2=25/27 Теперь вспомним что: √2 * sin(pi/4-a)=(cos(a)-sin(a))=√2/3 (вытекает из формулы синуса разности. И тут довольно элегантно находиться : (cosa-sina)^2=cos^2+sin^2a-sin2a. sin2a=1-(cosa-sina)^2=1-2/9=7/9 cos4a=1-2sin^2(2a)=1-98/81=-17/81. Осталось посчитать: 6*(7/9-17/81)-8*(25/27)=6*(46/81)-8*(75/81)=(6*46-8*75)/81=-324/81=-4 ответ: -4. Но мне почему то кажется, что я сделал не самым простым
Арифметическая прогрессия задается параметрами: - начальный элемент a₁ - разность прогрессии d
И тогда n-й элемент равен a₁+(n-1)d
Дано: а₃ = 7: a₉ = -18 Найти: a₁, a₆
В арифметической прогрессии для любых n и m одной четности элемент с индексом, равным среднему арифметическому n и m ((n+m)/2) равен среднему арифметическому элементов с индексами n и m.
6 = (3+9)/2, значит, a₆ есть среднее арифметическое элементов a₃ и a₉.
a₆ = (a₃+a₉)/2 = (7+(-18))/2 = -11/2
Разность между элементами a₃ и a₉ равна: a₃-a₉ = (a₁+(3-1)d)-(a₁+(9-1)d) = a₁+2d-a₁-8d = -6d. Отсюда d = (a₃-a₉)/(-6) = (7-(-18))/(-6) = -25/6
q=√2, значит подставляем
15√2+14=
b1=√2;
b7=b1*q^{n-1}=√2*
ОТВЕТ: 8√2
2) По аналогии.
S(n)=
Значит
7√3+3√6=
4√3=√3*
И решаем систему.
Получаем, что
ОТВЕТ: √2