Плот плывет со скоростью течения реки , следовательно:
30 : 5 = 6 ч . - время , которое он затратил
6-1 = 5 ч. - затратила лодка на путь туда-обратно
Лодка:
Собственная скорость - х км/ч
По течению:
Скорость - (х+5) км/ч
Расстояние - 60 км
Время - 60 /(х+5) ч.
Против течения :
Скорость - (х-5) км/ч
Расстояние - 60 км
Время - 60/(х-5) ч.
Уравнение.
60/(х+5) + 60/(х-5) = 5
(60(х-5) +60(х+5) ) / (х²-25) = 5 * (х²-25)
60х - 300 +60х +300 = 5(х²-25)
120 х = 5х²-125
120х -5х² + 125 =0 ÷(- 5)
х²-24х- 25=0
D= (-24)² - 4 *(-25) = 576+100=676
D > 0 - два корня
х₁= (24-√676) /2 = (24-26)/2 = -2/2=-1 - не удовл. условию задачи
х₂= (24+26 )/2= 50/2 =25 - собственная скорость лодки
ответ: 25 км/ч скорость лодки в неподвижной воде.
Объяснение:
Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
64+x²=36+196-28x+x²; 28x=168; x=6
ответ: 6 метров
1) 4x² - 13 = 7 2) 4x² - 13 = - 7
4x² = 20 4x² = 6
x² = 5 x² = 1,5
X₁ = √5 X₂ = - √5 X₃ = √1,5 X₄ = - √1,5
X₁ * X₂ * X₃ * X₄ = √5 * (- √5) * √1,5 * ( - √1,5) = - 5 * (- 1,5) = 7,5