1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х-6х-216=0
D=900
х=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х=18 (мин) время за которое 1-ый кран заполнит порожнюю ванну.
18-6=12 (мин) время за которое 2-ой кран опорожнит полную ванну.
Объяснение:
Пошаговое изъяснение: Пусть вся ванна 1 (единица), а х минут это время за которое 1-ый кран заполнит ванну, тогда время за которое 2-ой кран освободит ванну, будет х-6 минут. Производительность первого крана на заполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а общая производительность на опорожнение ванны 1/36. Составим уравнение:
ответ: Первый кран наполнит пустую ванну за 18 минут; второй кран опорожнит полную ванну за 12 минут.
Пошаговое объяснение: Пусть вся ванна 1 (единица), а х минут это время за которое первый кран наполнит ванну, тогда время за которое второй кран опорожнит ванну, будет х-6 минут. Производительность первого крана на наполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а совместная производительность на опорожнение ванны 1/36. Составим уравнение:
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х²-6х-216=0
D=900
х₁=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х₂=18 (мин) время за которое первый кран наполнит пустую ванну.
18-6=12 (мин) время за которое второй кран опорожнит полную ванну.
Подробнее - на -
решить уравнение lg(ax)=2lg(x+1) (1)
ОДЗ : { ax > 0 , x+1 > 0 .
lg(ax) = 2lg(x+1) ⇔ lg(ax) = lg(x+1)² ⇔ ax = (x+1)² ⇔ ax = x²+2x+1 ⇔
x² + (2 -a)*x +1 =0 (2)
Уравнение (2) имеет решение ,если D =(2-a)² - 4 = a² - 4a =a(a - 4) ≥ 0,
т.е. , если a ∈ ( -∞; 0] ∪ [4 ; +∞). [0] [4]
x₁ = (a - 2 - √(a² - 4a) ) /2 , * * * x₂ +1 = (a - √D) /2 * * *
x₂ = (a - 2+√(a² - 4a) ) /2) . * * * x₂ +1 = (a + √D) /2 * * *
При a = 0 ⇒ ax =0 (не выполняется неравенство ax > 0 системы ОДЗ) Уравнение (1) не имеет решение .
---
При a = 4 ⇒ x₁ =x₂ =1.
Уравнение (1) имеет единственное решение x₁ =x₂ =1 .
a ∈ ( -∞; 0 ) ∪ ( 4 ; +∞) .
* * * * * * * * * * * * * * * * *
a ∈ ( -∞ ; 0 ) * * * a < 0 * * *
{x₁ + x₂ = a -2 < 0 ,
{x₁ * x₂ = 1 .
Оба корня уравнения (2) отрицательны ,следовательно
ax₁ > 0 и ax₂ > 0 , но
x₁ +1 = (a - √(a²-4a) ) /2 < 0
x₂ +1 = (a + √(a²-4a) ) /2 > 0
Уравнение (1) имеет единственное решение x₂=(a -2+ √(a²-4a)) /2 .
a ∈ ( 4 ; +∞ ) * * * a > 4 * * *
{x₁ + x₂ = a -2 > 2 ,
{x₁ * x₂ = 1 . Оба корня уравнения (2) положительны
Уравнение (1) имеет два решения.
ответ: a ∈ [ 0 ; 4) ⇒ нет решения ,
a ∈ (-∞ ; 0) ∪ {4} ⇒одно решение: x =(a -2+ √(a²-4a)) /2 ,
a ∈ (4 ; +∞) ⇒ два решения: x₁ = (a -2 - √(a²-4a)) /2 и
x₂ = (a -2+ √(a²-4a)) /2 .