ОбъяснФормулы n-го члена и суммы n членов известны
an = a1 + d*(n - 1)
S(n) = (a1 + an)*n/2 = (2a1 + d*(n-1))*n/2
1) a1 = -5, n = 23, S(n) = 1909
1909 = (-2*5 + d*22)*23/2 = (-5 + 11d)*23
-5 + 11d = 1909/23 = 83
11d = 88, d= 8
2) a1 = -3,87, d= -2,77 + 3,87 = 1,1, n = 10
a10 = a1 + 9d = -3,87 + 9*1,1 = 9,9 - 3,87 = 6,03
S(10) = (-3,87 + 6,03)*10/2 = 2,16*5 = 10,8
3) a2 = a1 + d= 2, a9 = a1 + 8d = 6,9
a9 - a2 = 7d = 6,9 - 2 = 4,9
d= 0,7
4) 1) x1 = 3 + 2 = 5, x2 = 6 + 2 = 8, d= 3
S(20) = (2*5 + 3*19)*20/2 = (10 + 57)*10 = 670
2) x1 = 4 - 9 = -5, x2 = 8 - 9 = -1, d= 4
S(30) = (-2*5 + 4*29)*30/2 = (-10 + 116)*15 = 1590
5) 1) d= 2, an = 49, S(n) = 702
Система
{ an = a1 + d(n-1) = a1 + 2(n-1) = 49
{ S(n) = (a1 + an)*n/2 = (a1 + 49)*n/2 = 702
{ a1 + 2n = 49 + 2 = 51
{ a1*n + 49n = 702*2 = 1404
{ a1 = 51 - 2n
{ (51 - 2n)*n + 49n - 1404 = 0
-2n^2 + 100n - 1404 = 0
n^2 - 50n + 702 = 0
(n - 27)(n - 13) = 0
n = 13, a1 = 51 - 26 = 25
n = 27, a1 = 51 - 54 = -3
2) an = 18 - 2n, S(n) = n*(17 - n)
an = a1 + d(n-1) = a1-d + dn = 18 - 2n
S(n) = (2a1 + d(n-1))*n/2 = n*(17 - n)
Система
{ (a1-d) + dn = 18 - 2n
{ (2a1-d) + dn = 2(17 - n) = 34 - 2n
Из 2 уравнения вычитаем 1 уравнение
a1 = 34 - 18 = 16
Подставляем обратно в 1 уравнение
16 + dn - d = 18 - 2n
dn - d = 2 - 2n
d(n - 1) = -2(n - 1)
d= -2ение:
1. х4+х3+х2-х-2:х3+х-2
- ответ: х+1
х4+х2-2х
х3+х-2
-
х3+х-2
0
2. 2х4+3х3-10х2-5х-6=0
х=2 32+24-40-10-6=0
2х4+3х3-10х2-5х-6:х-2
- ответ: 2х3+7х2+4х+3
2х4-4х3
7х3-10х2-5х-6
-
7х3-14х2
4х2-5х-6
-
4х2-8х
3х-6
-
3х-6
0
2х3+7х2+4х+3=0
х=-3
2х3+7х2+4х+3:х+3
- ответ: 2х2+х+1
2х3+6х2
х2+4х+3
-
х2+3х
х+3
-
х+3
0
2х2+х+1
D = 1-8=-7 корень из дискриминанта не извлекается.
ответ: 2, -3
3. 4х2/(х-2)-4х/(х+3)=(9х+2)/(х2+х-6)
решаем квадратное уравнение х2+х-6 и найдя х1=2, х2=-3 раскладываем кв.ур. по формуле, получаем:
4х2/(х-2)-4х/(х+3)=(9х+2)/(х-2)(х+3) умножаем все части уравнения на (х-2)(х+3)
4х3+12х2-4х2+8х=9х+2
переносим все из правой части в левую и упрощаем:
4х3+8х2-х-2=0
х=-2 -32+32+2-2=0
4х3+8х2-х-2:х+2
- ответ:4х2-1
4х3+8х2
-х-2
-
-х-2
0
4х2-1=0 мы можем разложить левую часть уравнения формуле разности квадрата:
(2х-1)(2х+1)=0
По свойству: если произведение 2-х или более множителей равно нулю, то хотя бы одно из этих множителей равно нулю. Используя это свойство, приравниваем каждую из скобок к нулю:
2х-1=0 или 2х+1=0
2х=1 2х=-1
х=0,5 х=-0,5
ответ: х1=-2, х2=0,5, х3=-0,5
4. 2х2-у=2, 2х2-х-1=0 < все это системами
Х-у=1. y=х-1
решаем кв. ур.:
2х2-х-1=0
D=1+8=9 корень из D = 3
х1= (1-3)/4 или х2=(1+3)/4
х1=-0,5 х2=1
y1=-0,5-1=-1,5 y2=1-1=0
ответ:(-0,5;-1,5);(1;0).
5. (ху)/2=15 ху=30 < системами
х+у=11 х+у=11
х1=5 или х2=6
у1=6 х1=5
ответ:(5;6);(6;5)