Двузначное число обозначим как 10n+a, где n - число десятков, а - число единиц. При этом 1≤n≤9, 1≤a≤9, n∈Z, a∈Z, Z - множество целых чисел. По условию задачи запишем уравнение 10n+a=2na 10n=2na-a 10n=a(2n-1) a=10n/(2n-1) При n=1 а=10*1/(2*1-1)=10>9 При n=2 a=10*2/(2*2-1)∉Z При n=3 a=10*3/(2*3-1)=6. Двузначное число - 10*3+6=36 При n=4 a=10*4/(2*4-1)∉Z При n=5 a=10*5/(2*5-1)∉Z При n=6 a=10*6/(2*6-1)∉Z При n=7 a=10*7/(2*7-1)∉Z При n=8 a=10*8/(2*8-1)∉Z При n=9 a=10*9/(2*9-1)∉Z Таким образом, существует только одно двузначное число, которое в 2 раза больше произведения своих цифр - 36. Произведение его цифр - 3*6=18, 36/18=2.
Двузначное число обозначим как 10n+a, где n - число десятков, а - число единиц. При этом 1≤n≤9, 1≤a≤9, n∈Z, a∈Z, Z - множество целых чисел. По условию задачи запишем уравнение 10n+a=2na 10n=2na-a 10n=a(2n-1) a=10n/(2n-1) При n=1 а=10*1/(2*1-1)=10>9 При n=2 a=10*2/(2*2-1)∉Z При n=3 a=10*3/(2*3-1)=6. Двузначное число - 10*3+6=36 При n=4 a=10*4/(2*4-1)∉Z При n=5 a=10*5/(2*5-1)∉Z При n=6 a=10*6/(2*6-1)∉Z При n=7 a=10*7/(2*7-1)∉Z При n=8 a=10*8/(2*8-1)∉Z При n=9 a=10*9/(2*9-1)∉Z Таким образом, существует только одно двузначное число, которое в 2 раза больше произведения своих цифр - 36. Произведение его цифр - 3*6=18, 36/18=2.
х1=3+7/2=10/2=5
х2=3-7/2=-4/2=-2
2.Д=1+8=9
х1=-1+3/2=2/2=1
х2=-1-3/2=-2/2=-1
3.Д=1+36=37