Даны 3 вершины треугольника. a (3; 2), b (10; 3), c (7; -2) найти: уравнение и длину высоты, проведенной из вершины b. должно присутствовать решение, если есть возможность присылайте фото решения на бумаге (читабельное).
Уравнение стороны АС: (x - 3)/(7 - 3) = (y - 2)/(-2 - 2) (x - 3)/4 = (y - 2)/(-4) -(x - 3) = y - 2 -x + 3 = y - 2 y = -x + 5 Ее угловой коэффициент k1 = -1 Высота BH - это прямая, перпендикулярная к АС, проходящая через В. Ее угловой коэффициент равен k2 = -1/k1 = -1/(-1) = 1. Уравнение: y - 3 = 1(x - 10) y = x - 7 Чтобы найти длину высоты, нужно найти точку Н, в которой пересекаются АС и ВН. Для этого решим систему: { y = -x + 5 { y = x - 7 -x + 5 = x - 7 x = 6; y = 6 - 7 = -1 H(6, -1) Длина высоты - это расстояние BH
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
1) sin a = √2/2; a1 = pi/4+2pi*k; cos a1 = √2/2 a2 = 3pi/4+2pi*k; cos a2 = -√2/2 cos(60 + a1) = cos 60*cos a1 - sin 60*sin a1 = = 1/2*√2/2 - √3/2*√2/2 = √2/4*(1 - √3) = -√2(√3 - 1)/4 cos(60 + a2) = cos 60*cos a2 - sin 60*sin a2 = = -1/2*√2/2 - √3/2*√2/2 = -√2/4*(1 + √3) = -√2(√3 + 1)/4
2) sin a = 2/3; cos b = -3/4; a ∈ (pi/2; pi); b ∈ (pi; 3pi/2) cos a < 0; sin^2 a = 4/9; cos^2 a = 1-4/9 = 5/9; cos a = -√5/3 sin b < 0; cos^2 b = 9/16; sin^2 b = 1-9/16 = 7/16; sin b = -√7/4 sin(a+b) = sin a*cos b + cos a*sin b = = 2/3*(-3/4) + (-√5/3)(-√7/4) = -6/12 + √35/12 = (√35 - 6)/12 cos(-b) = cos b = -3/4
(x - 3)/(7 - 3) = (y - 2)/(-2 - 2)
(x - 3)/4 = (y - 2)/(-4)
-(x - 3) = y - 2
-x + 3 = y - 2
y = -x + 5
Ее угловой коэффициент k1 = -1
Высота BH - это прямая, перпендикулярная к АС, проходящая через В.
Ее угловой коэффициент равен k2 = -1/k1 = -1/(-1) = 1. Уравнение:
y - 3 = 1(x - 10)
y = x - 7
Чтобы найти длину высоты, нужно найти точку Н, в которой пересекаются АС и ВН. Для этого решим систему:
{ y = -x + 5
{ y = x - 7
-x + 5 = x - 7
x = 6; y = 6 - 7 = -1
H(6, -1)
Длина высоты - это расстояние BH