М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
6Анна111111111111111
6Анна111111111111111
16.12.2022 15:58 •  Алгебра

Найдите -4sin(3п/2-a) если sina=0,96

👇
Ответ:
ещКеРе11
ещКеРе11
16.12.2022
Cosa=+-√(1-sin²a)=+-√(1-0,96)(1+0,96)=+-√(0,04*1,96)=+-0,2*1,4=+-0,28
-4sin(3π/2-a)=4cosa=+-4*0,28=+-1,12
4,6(83 оценок)
Открыть все ответы
Ответ:
Sniper009902
Sniper009902
16.12.2022
V - знак квадратного корня
V(10-x^2) + V(x^2+3)=5
ОДЗ:
1)10-x^2>=0
    (V10-x)(V10+x)>=0
     -[-V10]+[V10]-
                          
2)x^2+3>=0  при x e R

Приступим к решению уравнения:
V(10-x^2)= 5-V(x^2+3)
Возведем обе части уравнения в квадрат:
10-x^2=25-10V(x^2+3) +x^2+3
Корневую часть перенесем влево:
10V(x^2+3)= 25+x^2+3-10+x^2
10V(x^2+3)= 2x^2+18
10V(x^2+3)=2(x^2+9)
5V(x^2+3)=x^2+9
Снова возведем обе части в квадрат:
25(x^2+3)=(x^2+9)^2
25x^2+75=x^4+18x^2+81
25x^2+75-x^4-18x^2-81=0
-x^4+7x^2-6=0
x^4-7x^2+6=0
Делаем замену:
пусть x^2=t, тогда:
t^2-7t+6=0
D=(-7)^2-4*1*6=25
t1=(7-5)/2=1
t2=(7+5)/2=6
Делаем обратную замену:
1)x^2=1 => x=-1; x=1
2)x^2=6 => x=-V6; x=V6
Все найденные значения Х входят в ОДЗ.
ответ:{-V6;-1;1;V6}
4,6(18 оценок)
Ответ:
DanilДюжик
DanilДюжик
16.12.2022

Под множеством математики понимают соединение каких-либо

объектов в одно целое. Создатель теории множеств немецкий математик

Георг Кантор (1845-1918) определил множество как «объединение в одно

целое объектов, хорошо различаемых нашей интуицией или нашей мыслью».

Он же сформулировал это короче: «множество – это многое, мыслимое нами

как единое». На самом деле ни одна из этих фраз не является определением в

строгом математическом понимании. Понятие множества вообще не

определяется, это одно из первичных понятий математики. Его можно

пояснить, приводя более или менее близкие по смыслу слова: коллекция,

класс, совокупность, ансамбль, собрание, или примеры: экипаж корабля –

множество людей, стая – множество птиц, созвездие – множество звезд.

Множества, рассматриваемые в математике, состоят из математических

объектов (чисел, функций, точек, линий и т.д.). Объекты, из которых состоит

множество, называют его элементами. Важно отметить, что в множестве все

элементы отличаются друг от друга, одинаковых элементов быть не может.

Тот факт, что элемент принадлежит множеству , обозначают так:

, а если не принадлежит , то пишут .

Множества бывают конечные и бесконечные. Конечное множество

может быть задано перечислением его элементов, при этом список элементов

заключается в фигурные скобки, например:

{1, 2, 4, 8, 16};

;

{красный, желтый, зеленый}.

Элементы могут перечисляться в любом порядке: и

– одно и то же множество.

Число элементов в конечном множестве называется его мощностью.

Мощность множества обозначается .

Иногда и бесконечные множества задаются в форме перечисления

элементов с использованием многоточия, например:

;

;

.

При этом предполагается, что читающий подобную запись знает, как

должен быть продолжен написанный ряд (или его следует предупредить об

этом).

Примеры бесконечных множеств:

 множество всех натуральных чисел;

 множество натуральных чисел с добавленным

элементом 0;

 множество всех целых чисел;

– множество всех рациональных чисел;

 множество всех вещественных чисел.

Пустое множество обозначается знаком , оно не содержит ни одного

элемента: . Иногда полезно считать, что существует некое

универсальное множество (универс, универсум), содержащие все элементы,

представляющие интерес в данных обстоятельствах. Например, изучая

свойства целых чисел, мы можем выбрать в качестве универса множество ,

а занимаясь геометрией на плоскости – множество всех точек плоскости.

Обычно универс обозначают буквой

U .

Часто множество задают указанием свойства , выделяющего

элементы этого множества среди всех элементов универса . Тот факт, что

элемент имеет свойство записывают так: . Множество всех

элементов из , имеющих свойство , представляется в форме:

или и или просто , если ясно, о каком универсе

идет речь. Примеры:

четно};

и

1.2. Подмножества

Множество называется подмножеством множества , если каждый

элемент из принадлежит . Символически это записывается так: .

Это можно прочитать как “ включено в ”. Отметим некоторые свойства

отношения включения:

для любого множества .

для любого множества .

Если и , то .

Если и , то .

Элемент множества сам может быть множеством. Например,

множество состоит из 5 элементов.

Если элементами множества являются подмножества множества ,

то говорят, что есть семейство подмножеств множества . Приведенное

выше множество есть семейство подмножеств множества

Семейство всех подмножеств множества обозначается через

.

Если, например, , то

.

Теорема 1.1 (о числе подмножеств). Если – конечное множество,

то

.

Доказательство. Пусть Доказательство проводим индукцией

по . При утверждение верно, так как

, а единственным

подмножеством пустого множества является оно само. При возьмем

какой-нибудь элемент и обозначим через множество всех элементов

множества , отличных от . Тогда и по предположению

индукции

. Каждое подмножество множества либо содержит,

либо не содержит элемент . Подмножества, не содержащие , являются

подмножествами множества , таких имеется

. Всякое подмножество,

содержащее , получается добавлением элемента к некоторому

подмножеству множества . Поэтому таких подмножеств тоже

. Всего,

следовательно,

.

Для представления подмножеств конечного множества часто

используют следующий . Пусть – конечное множество, элементы

которого пронумерованы числами 1, 2, …, n: .

Подмножество можно задать последовательностью нулей и единиц:

, где =

ес

Объяснение:

4,5(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ