Во-первых, обозначим стороны прямоугольника: Пускай длина - a, ширина - b. Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат. У квадрата все стороны равны! Обозначим стороны данного квадрата: Длина: a - 4 Ширина: b + 7. Ширина равняется длине у квадрата. Значит:
Еще, знаем что площадь квадрата равна 100. То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение. Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11 a = 3 + 11 = 14 Подставим в первое уравнение:
Ноль появляется каждый раз, когда встречается пара 2*5, то есть когда умножается чётное число на число кратное 5.Среди натуральных чисел от 1 до 2015 чётных чисел намного больше, чем кратных 5, так что достаточно сосчитать пятёрки, а уж на каждую пятёрку найдётся своя двойка. 1) 2015 = 5·403. То есть 403 числа делятся на 5. 2) Числа, кратные 25 (25, 50, 75, 100 и т.д.), дадут нам по две пятёрки (25=5*5). Таких чисел 80, потому что 2015 = 25·80+15. То есть общее количество пятёрок увеличится на 80. 3) Числа, кратные 125 (125, 250, 375, 500 и т.д.), дадут нам по три пятёрки (125=5*5*5). Таких чисел 16, потому что 2015 = 125·16+15. Не забудем добавить ещё 16 пятёрок. 4) Числа, кратные 625 (625, 1250 и 1875), дадут нам по 4 пятёрки (625=5*5*5*5). Таких чисел только 3 (четвёртое уже больше, чем 2015), поэтому добавим ещё 3 пятёрки.
Всего имеем: 403+80+16+3 = 502 пятёрки, и это значит, что факториал 2015! оканчивается 502 нулями.
s=π*c²/4π²=c²/4π
c=12.56
s=12.56²/4*3.14=12.52