Y=(x²+4)/x = x +4/x/ y'=1-4/x². 1-4/x²=0 x=+-2. Это критические точки функции. Определяем знаки производной. (-∞;-2) - плюс, возраст функ. (-2;0) - минус, убывающая функ. х=-2 - точка максимума.
Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
(m) отрицательным быть не может ---> для m < 0 решений НЕТ для m >= 0 возможны два варианта: x^2 + 3x + (4-m) = 0 или x^2 + 3x + (4+m) = 0 D= 9-4(4-m) = 4m - 7 D= 9-4(4+m) = -4m - 7 условие существования корней D ≥ 0 4m - 7 ≥ 0 -4m - 7 ≥ 0 для m < 7/4 корней нет для m > -7/4 корней нет для m ≥ 7/4 x₁;₂ = (-3 +-√(4m-7)) / 2 для m < 7/4 корней НЕТ
y'=1-4/x².
1-4/x²=0
x=+-2.
Это критические точки функции. Определяем знаки производной.
(-∞;-2) - плюс, возраст функ.
(-2;0) - минус, убывающая функ. х=-2 - точка максимума.
(0;2) - минус, убывающ.
(2;+∞) - плюс, возраст. х=2 = точка минимума.