1а) Каждая монета может упасть либо орлом (О) либо решкой (Р), то есть две возможности.Монет всего 3.Тогда число возможных событий для 3-х монет равно 2^3=8.Вот варианты: (РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО) Два раза орёл и один раз решка выпадает в трёх случаях (ООР) (ОРО) (РОО). Вероятность равна 3/8. 1б) Если монету бросают дважды, то возможны случаи (ОО) (ОР) (РО) (РР) Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4. 2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 . Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3 б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна 2/6*3/6=6/36=1/6
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Угловые коэфф. касательных k_1=y'(x_1),\; k_2=y'(x_2)k1=y′(x1),k2=y′(x2)
Уравнение касательной: y=y(x_1)+y'(x_1)(x-x_1)y=y(x1)+y′(x1)(x−x1)
\begin{lgathered}y=x^2,\; \; y(x_1)=x_1^2y'=2x,y'(x_1)=2x_1Yravn.kasat.\; \; y=x_1^2+2x_1(x-x_1)\end{lgathered}y=x2,y(x1)=x12y′=2x,y′(x1)=2x1Yravn.kasat.y=x12+2x1(x−x1)
Теперь подставим координаты точки, через которую проходит касательная, (0,-2) , в уравнение касательной вместо переменных:
\begin{lgathered}-2=x_1^2+2x_1(0-x_1)-2=x_1^2-2x_1^2,\; \; x_1^2=2,\; x_1=\sqrt2,x_2=-\sqrt2\end{lgathered}−2=x12+2x1(0−x1)−2=x12−2x12,x12=2,x1=√2,x2=−√2
В принципе мы имеем обе точки касания: A(\sqrt2,2),\; B(-\sqrt2,2)A(√2,2),B(−√2,2)
Подставим значения абсцисс в уравнение касательной.
\begin{lgathered}a)\; \; y=2+2\sqrt2(x-\sqrt2)\; \to \; y=2+2\sqrt2x-4,y=2\sqrt2x-2\; \to k_1=2\sqrt2b)\; \; y=2-2\sqrt2(x+\sqrt2),\to \; y=-2\sqrt2x-2\; \to k_2=-2\sqrt2\end{lgathered}a)y=2+2√2(x−√2)→y=2+2√2x−4,y=2√2x−2→k1=2√2b)y=2−2√2(x+√2),→y=−2√2x−2→k2=−2√2
Угол между прямыми можно найти по формуле
\begin{lgathered}tg \alpha =|\frac{k_1-k_2}{1+k_1k_2}|tg \alpha =|\frac{2\sqrt2-(-2\sqrt2)}{1+2\sqrt2(-2\sqrt2)}|=|\frac{4\sqrt2}{1-8}|=\frac{4\sqrt2}{7} \alpha =arctg\frac{4\sqrt2}{7}\end{lgathered}tgα=∣1+k1k2k1−k2∣tgα=∣1+2√2(−2√2)2√2−(−2√2)∣=∣1−84√2∣=74√2α=arctg74√2