Перенесем все влево и вынесем за скобки
:

Из этого следует, что уравнение всегда имеет хотя бы одно решение -
. Задача сводится к тому, чтобы посмотреть, при каких
будут корни у уравнения
и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.
1) проверим, при каком значении
корнем уравнения
будет
. Подставляем ноль в уравнение:
. При
имеем:

Делаем вывод, что при
уравнение имеет два корня:
.
2) при
уравнение
не может иметь корень
. Уравнение - квадратное. Сразу ищем дискриминант: 
Здесь рассматриваем 3 случая:
2.1. Если
, то уравнение
решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.
2.2. Если
, то подставляя вместо параметра -9 в итоге получаем:
. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.
2.3. Если
, то уравнение
имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит
, а мы его проверяли отдельно - при
корней будет 2, а не 3, поэтому из неравенства его нужно исключить.
ОТВЕТ: При
уравнение имеет единственный корень; при
и
уравнение имеет два различных корня; при
уравнение имеет три различных корня.
c+b=74/2=37
(a+c)*(a+b)=cb+164
a² +ac+ab+cb = cb+164
a²+ac+ab=164
a²+a(c+b)=164 c+b=37 cм (по условию)
а²+37а-164=0
D=1369+656=2025 √D=45
a=(-37+45)/2= 4
а=(-37-45)/2= - 41 < 0 не подходит
ответ : а=4