1) Дано: 3^(5x-2,5)≤√3, приводим к общему основанию: 3^(5x-2,5)≤3^0,5, т.к. основания одинаковые, работаем только с показателями степени и решаем неравенство: 5x-2,5≤0,5 ⇒ x≤3/5 или x≤0,6
2) Дано: (x²-1)*√(4x+7)≤0
а) Сначала выполняем ОДЗ для подкоренного выражения, которое никогда не бывает меньше нуля: 4x+7≥0 ⇒ x≥-7/4 или x≥-1,75
б) Так как всё неравенство меньше либо равно нулю, то это может быть лишь в том случае, когда x^2-1 либо меньше нуля, либо равно нулю. Зная, что произведение двух чисел равно нулю только когда оба множителя равны нулю, решим второе неравенство:
x²-1≤0, x²≤1 ⇒ x≤ 1 и x ≤ -1
в) Объедением наше решение (x≤ 1 и x ≤ -1) с ОДЗ (x≥-1,75) и получаем, что наш икс лежит в промежутке [-1,75;-1]
ответ: x∈[-1,75;-1]
3) Дано: log_2(x-2)+log_2(x)=0,5log_3(9).
Упростим его до вида: log_2(x-2)+log_2(x)=1 (в правой части получилась единица по свойству логарифмов, показатель 9 можно записать в виде 3² и степень переноситься в множитель логарифма, сокращаясь с 0,5 и в итоге получается log_3(3) либо просто один). Теперь приводим уравнение к общему основанию, логарифмируя единицу:
log_2(x-2)+log_2(x) = log_2(2), log_2(x²-2x) = log_2(2); т.к. в ообоих частях у нас получилось одинаковое основание логарифма 2, то работаем только с выражениями под логарифмом:
x²-2x=2, x²-2x-2=0, решаем как квадратное уравнение по дискриминанту: √D = √(4+8) = √12 = 2√3
Корни данного уравнения: x₁ = 2+√3 и x₂ = 2-√3
Объяснение:Найти производную следующих функций:
1) у = 4х^4 + 3х; y'= (4x⁴+3x)'= 16x³+3
2) у = 12х^2 - х – 2; y'= (12x²-x-2)' =24x - 1
3) у = -4х^9 - 8х^4 – 6х + 22; y' = (-4x⁹-8x⁴-6x+22)= - 36x⁸-32x³-6
4) у= 8х^7 - 14х^5 + 5х - 10; y' =(8x⁷-14x⁵+5x-10)'= 56x⁶-70x⁴+5
5) у = 6х^3 + (1/9)х^3 + 9х; y'= 18x²+(1/3)x²+9
6) у = 19х^4 + 3х^8 – 22. y'=76x³+24x⁷
«Производная степенной, логарифмической и показательной функций»
Найти производную следующих функций:
1. у = (х - 2)^8 y' = 8(x-2)⁷(x-2)'=8(x-2)⁷
2. у = (х2 + 2х)^3 y'= 3(x²+2x)²(x²+2x)'= 3(x²+2x)(x+2)=3x(x+2)²= 3x(x²+4x+4)=3x³+12x²+12x
3. у = (х +3)^4 y'=4(x+3)³(x+3)'= 4(x+3)³ =4( x³+9x²+27x+27)
4. у = 41^х y' = 41ˣ ln41
5. у = (3 + 5х + х3)^2 y' = 2( x³+5x+3)( x³+5x+3)'= 2( x³+5x+3)(2x+5)