1) ОДЗ: x ≠ -4
Домножаем на (x + 4) ( ll · (x + 4)
x² = x
Делим все на x ( ll : x )
x = 1
3) ОДЗ: x ≠ 0 ; x ≠ -2
ll · x
8x - 5 = (3x)² / x + 2 ll · (x + 2)
(8x - 5)(x + 2) = (3x)²
8x² + 16x - 5x - 10 - 9x² = 0
-x² + 11x - 10 = 0 ll · (-1)
x² - 11x + 10 = 0
Далее ищем корни через Дискриминант.
D = b² - 4ac
D = 121 - 40 = 81 = 9²
x₁ = (11 + 9) / 2 = 10
x₂ = (11 - 9) / 2 = 1
4) ОДЗ: x ≠ 3 ; x ≠ -2
ll · (x - 3)(x + 2)
x(x + 2) - (x - 10)(x - 3) = 5(x + 2)(x - 3)
x² + 2x - (x² - 3x - 10x + 30) = (5x + 10)(x - 3)
x² + 2x - x² + 13x - 30 = 5x² - 15x + 10x - 30
15(x - 2) = 5(x² - 3x + 2x - 6) ll : 5
3x - 6 = x² - x - 6
x² - 4x = 0 ll : x
x = 4
Все) Пиши, если что-то будет непонятно.
45-5t²=0
-5t²=-45
t²=9
t₁=3 t₂=-3 - не подходит по физическому смыслу
ответ: 3 сек
2) Здесь будет неравенство, H>25 ОДЗ: t≥0 (время же не может быть отрицательным)
45-5t²>25
-5t²>-20
5t²<20
t²-4<0
(x-2)(x+2)<0
Парабола ветви вверх:
x∈(-2;2) но не забываем про ОДЗ: x∈[0;2)
ответ: первые две секунды