Решение: Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
Решение: Данное задание можно представить в виде прямоугольного треугольника АВС. Обозначим высоту фонарного столба за АВ, а рост человека, делящий треугольник на два прямоугольных треугольника, например за ДЕ. Получим два подобных треугольника АВС и ДЕС. Запишем пропорциональности их сторон: АВ/ДЕ=АС/ДС Нам известны АВ равно 6 (м) ДЕ-обозначим за х (это рост человека) АС=АД+ДС=2,8+1,2=4 (м) АД -это расстояние человека от столба; ДС-нам тоже известна, она равна 1,2 (м) Поставим данные в пропорцию и получим: 6/х=4/1,2 х=6*/1,2/4=1,8(м) -это рост человека.
3+4x²+12x+9=24x+4x²-36-6x
4x²-4x²+12x-24x+6x=-36-3-9
-6x=-48/:(-6)
x=8