М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alina1923
alina1923
24.03.2023 20:18 •  Алгебра

Докажите тождество (5z^2-6k)^2-(5z^2+3k)^2+90z^2k=27k^2

👇
Ответ:
Sherstev
Sherstev
24.03.2023
(5z^2-6k)^2-(5z^2+3k)^2+90z^2k=
=(5z^2-6k+5z^2+3k)(5z^2-6k-5z^2-3k)+90z^2k=
=(10z^2-3k)(-9k)+90z^2k=
=-90z^2k+27k^2+90z^2k=27k^2
4,6(20 оценок)
Открыть все ответы
Ответ:
gagarinov51
gagarinov51
24.03.2023

Пусть х (км/ч) - скорость катера, тогда скорость катера по течению равна х+3 (км/ч), а против течения - х-3 (км/ч). Известно, что по течению катер проплыл 5 часов, в то время как против течения - 7 часов. Найдем пройденный путь для каждой ситуации:

S1 = (x+3)t1 - путь пройденный по течению, где t1 = 5ч

S2 = (x-3)t2 - путь пройденный против течения, где t2=7ч

Так как в обоих случаях пройден один и тот же путь, то S1 = S2. Приравняем их формулы и получим:

5(x + 3) = 7(x - 3) \\ 5x + 15 = 7x - 21 \\ 2x = 36 \\ x = 18

Таким образом, скорость катера в стоячей воде равна 18 км/ч.

По течению катер проплыл:

5 \times (18 + 3) = 5 \times 21 = 105

км

4,4(65 оценок)
Ответ:
Марина0506
Марина0506
24.03.2023

7–10. Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней. Решаем уравнения, находим корни уравнения и сравниваем ответы.

7. 1) {x}^{2} = - 1

число в корне не может равняться отрицательному числу, корней уравнения нет.

2) |x| = - 2

число в модуле не может равняться отрицательному числу, корней уравнения нет.

=> уравнения равносильные.

8. 1) x + 3 = 3 + x

0 = 0

корней уравнения нет.

2) \frac{x + 3}{x + 3} = 1

1 = 1

корней уравнения нет.

=> уравнения равносильные.

9. 1) \frac{ {x}^{2} - 4}{x - 2} = 0

ОДЗ: x - 2≠0, x≠2;

{x}^{2} - 4 = 0

{x}^{2} = 4

x = ± \sqrt{4}

x_1 = 2(не удовлетворяет ОДЗ), x_2 = - 2

ответ: - 2

2) {x}^{2} - 4 = 0

{x}^{2} = 4

x = ± \sqrt{4}

x_1 = 2, x_2 = - 2

ответ: - 2; 2

=> уравнения не равносильные.

10. 1) \frac{ {(x + 2)}^{2} }{x - 1} = 0

ОДЗ: x - 1≠0, x≠1;

{(x + 2)}^{2} = 0

x + 2 = 0

x = - 2

ответ: - 2

2) x + 2 = 0

x = - 2

ответ: - 2

=> уравнения равносильные.

\:

12–16. Необходимо найти сумму корней уравнения. Решаем уравнение, находим корни уравнения, складываем их. Если уравнение имеет один корень, то суммой (ответом) будет значение корня уравнения.

12. \frac{ {x}^{2} - 9 }{x + 3} = 0

ОДЗ: x + 3≠ 0, x≠ - 3;

{x}^{2} - 9 = 0

{x}^{2} = 9

x = ± \sqrt{9}

x_1 = 3, x_2 = - 3(не удовлетворяет ОДЗ)

ответ: 3

13. \frac{x + 3}{x} - 2 = 0

ОДЗ: x≠0;

\frac{x + 3}{x} = 2

\frac{x + 3}{x} = \frac{2}{1}

(x + 3) \times 1 = x \times 2

x + 3 = 2x

x - 2x = - 3

- x = - 3

x = 3

ответ: 3

14. \frac{x}{x + 2} = 2

ОДЗ: x + 2≠0, x≠ - 2;

\frac{x}{x + 2} = \frac{2}{1}

x \times 1 = (x + 2) \times 2

x = 2x + 4

x - 2x = 4

- x = 4

x = - 4

ответ: - 4

15. \frac{3}{x - 2} = \frac{2}{x - 3}

ОДЗ: x - 2≠0, x≠2, x - 3≠0, x≠3;

\frac{3}{x - 2} = \frac{2}{x - 3}

3 \times (x - 3) = (x - 2) \times 2

3x - 9 = 2x - 4

3x - 2x = 9 - 4

x = 5

ответ: 5

16. \frac{3 {x}^{2} + 1 }{x} = 3x - 1

ОДЗ: x≠0;

\frac{3 {x}^{2} + 1 }{x} = \frac{3x - 1}{1}

(3 {x}^{2} + 1) \times 1 = x \times (3x - 1)

3 {x}^{2} + 1 = 3 {x}^{2} - x

3 {x}^{2} - 3 {x}^{2} + x = - 1

x = - 1

ответ: - 1

4,8(47 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ