М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MatveyS007
MatveyS007
02.01.2022 17:38 •  Алгебра

Если tga=5/4, тогда sina+cosa/2sina-cosa

👇
Ответ:
(sina+cosa)/(2sina-cosa) =
делим числитель и знаменатель на cosa
= (tg a + 1)/(2tga - 1) =
при tga = 5/4 получаем
= (5/4 + 1)/( 10/4 - 1) = 9/4 : 6/4 = 9/6 = 3/2 = 1,5
ответ: 1,5
 
4,6(16 оценок)
Открыть все ответы
Ответ:
1.)2х+5у=36    и 2х-5у=-44 складываете первое и второе уравнение , получили
4х=-8
х=-2  В любое уравнение подставить х=-2 , например , в первое :
2·(-2)+5у=36
-4+5у=36
5у=36+4
5у=40
у=40:5
у=8
ответ : (-2;8)
2)9у-4х=-13  и  -4х-9у=-67 складываем первое и второе уравнение , получим
-8х=-80 ( складывайте только соответствующие переменные и значения )
х=10
подставить х=10 в любое уравнение системы , например , во второе:
-4·10-9у=-67
-40-9у=-67
-9у=-67+40
-9у=-27
у=-27:(-9)
у=3
ответ:(10;3)
3)7у-9х=36  и -9х-7у=-90 Складываем первое и второе уравнение системы
7у+(-7у)-9х+(-9х)=-90+36
-18х=-54
х=3
подставим значение х=3 в любое уравнение системы , например , в первое :  7у-9·3=36
7у-27=36
7у=27+36
7у=63
у=63:7
у=9
ответ:(3;9)
4,8(22 оценок)
Ответ:
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 
4,6(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ