1) выражения имею смысл при х>=0 составим и решим неравенство 1/9 х^2-2x+9>=0|(x9) x^2-18x+81>=0 регим как квадратное уравнение x^2-18x+81=0 (х-9)^2=0 х-9=0 х=9 теперь необходимо нарисовать ось Ох и на ней отметить точку х=9, которая разделит всю ось х на два интервала: 1(- беск;9] и [9; беск), определим знак нашего неравенства на каждом из интервалов (- беск; 9]: 0: 0^2-18*0+81=0-0+81=81 >0, верно 2. [9; беск): 10: 10^2-18*10+81=100-180+81=181-100=81 >0, верно данное выражение имеет смысл пи любых значениях х, ответ хЄ(- беск;9]U [9; беск) 2) Аналогично решаем и второе уравненеи (-9х^2+2х-2)^(-1)>=0 1/(-9x^2+2x-2)>=0 так как выражение в знаменателе то оно должно быть строго >0 1/(-9x^2+2x-2)>0 Решим как квадратное уравнение 1/(-9х^2+2х-2)=0 знаменатель не может быть равным нолю, поэтому нет решений Следовательно данное неравенство не имеет решений, а выражение не имеет смысла при любых значениях х ответ:х не принадлежит R
Составим систему: x - y = 5 x*y = 84 Выразим "х" через "у" и подставим полученное значение во второе уравнение. x = 5 + y y*(5 + y)=84 Получаем квадратное уравнение: y*y + 5*y - 84 = 0 Находим дискриминант: D= 5*5 - 4*(-84) = 25 + 336 = 361 = 19*19 Находим возможные действительные значения "у": y1 = ( - 5 + 19)/2 = 7 y2 = ( - 5 - 19)/2 = - 12 Подставляем полученные значения в первое уравнение. Потом выполняем проверку через подстановку полученного значения "х" во второе уравнение. Получаем, что искомые числа: -7 и -12, а также 12 и 7.