|x| - это расстояние от нуля до x, поэтому решением этой системы неравенств (ведь тут не одно неравенство, а два) является объединение двух интервалов (-10; -4)∪(4;10). Концы интервалов в ответ не входят, поэтому подсчитываем количество целых решений внутри; достаточно подсчитать их количество в одном из них и удвоить: 5·2=10
ответ: 10
Замечание 1. Если бы интервал был бы большим, мы бы придумали, как подсчитать количество целых точек на основании концевых точек, но здесь легче их просто пересчитать.
Замечание 2. И все-таки хочется придумать общую формулу. Если интервал (m;n), где m и n - целые числа и m<n, то целых чисел внутри n-m-1.
11sin^2 a + 9cos^2 a + 8sin^4 a + 2cos^4 a = = 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*) Заметим, что 1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9 2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a = = (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a) Подставляем (*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a = = 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a = = 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) = = 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a = = 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 = = 10(sin^2 a - 1/10)^2 + 109/10 Минимальное значение квадрата равно 0, а всего выражения 109/10.
35+(5x)²-1²=(5x)²+2*5x*2+2²
35+25x²-1=25x²+20x+4
25x²-25x²-20x=4-35+1
-20x=-30
x=-30/-20=30/20=1 10/20=1 1/2=1,5
35+(5*1,5-1)(5*1,5+1)=(5*1,5+2)²
ответ:x=1,5
2)6-x+(2x-1)²=4(x+3)²
6-x+(2x)²-2*2x*1+1²=4(x²+2*x*3+3²)
6-x+4x²-4x+1=4(x²+6x+9)
6-x+4x^2-4x+1=4x^2+24x+36
-x+4x^2-4x-4x^2-24x=36-6-1
-29x=29
x=29:(-29)
x=-1
6-(-1)+(2(-1)-1)^2=4(-1+3)^2
ответ:x=-1