М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kachalova54
Kachalova54
24.11.2021 11:25 •  Алгебра

Вычислить площадь фигуры, ограниченной графиком функции f(x)=x²-6x+9 и осями х и у записать общий вид производных для функции f(x)=x²-6x+9

👇
Ответ:
zombovizor
zombovizor
24.11.2021
1
Найдем пределы интегрирования
x²-6x+9=0
(x-3)²=0
x-3=0
x=3
Фигура ограничена осью оу,значит х=0
S= \int\limits^3_0 {(x^2-6x+9)} \, dx= x^3/3-3x^2+9x|^3_0=9-27+27=9
2
f`(x)=2x+6
Но думаю,чтот нужен общий вид первообразных
F(x)=x³/3-3x²+9x+C
4,7(90 оценок)
Открыть все ответы
Ответ:
dilfuza2105
dilfuza2105
24.11.2021
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
4,6(89 оценок)
Ответ:
aldjona
aldjona
24.11.2021
Выпишем простые числа от 11 до 37:
11, 13, 17, 19, 23, 29, 31, 37
Количество дробей, у которых числитель и знаменатель являются различными числами (дробь не равна 1) равно 8*7=56.
Наименьшая такая дробь равна 11/37, наибольшая 37/11.
Пусть в дроби x/y фиксирован числитель и равен x=a. Тогда чтобы эта дробь была больше 1/2, Знаменатель должен быть больше, чем 2a.
Тогда рассмотрим каждое из чисел в качестве числителя.
1) a = 11, тогда y > 22 - из выписанных чисел таких 4 штуки. Поэтому получилось 4 дроби с числителем 11
2) a = 13, тогда y > 26 - 3 штуки
3) a = 17 => y > 34 - 1 штука
4) a = 19 => y > 38 - 0 штук
Очевидно, что дальше будет так же по 0 штук.
Суммируем полученные количества для каждого a и получаем 4+3+1=8 дробей, которые меньше 1/2 и у которых числитель и знаменатель составлены из перечисленных простых чисел.
4,5(87 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ