1.найти ООФ: D(y)=(0;+∞) 2.определить точки пересечения графика ф-ции с осями координат: Если y=0 то, lnx/x=0 lnx=0 x=1 (1;0) 3. четность,нечетность,периодичность: ф-ции ни четная, ни нечетная т.к., х не будет принимать отрицательные значения. Не является периодической. 4.Определим точки возможного экстремума: f'(x)=(lnx/x)'=((1/x)*x-lnx)/x2=(1-lnx)/x2 приравняем ее к нулю. (1-lnx)/x2=0 1-lnx=0 -lnx=-1 lnx=1 x=e -критическая точка. 5. определим точки возможного перегиба, для этого найдем вторую производную: f''(y)=((1-lnx)/x2)'=((-1/x)*x2-(1-lnx)*2x)/x4=(-x-2x*(1-lnx))/x4=(-x-2x+2xlnx)/x4=(-x*(3-2lnx))/x4=(2lnx-3)/x3 (2lnx-3)/x3=0 2lnx-3=0 2lnx=3 lnx=3/2 x=e3/2 6. найдем промежутки возрастания и убывания, точки экстремума,промежутки выпуклости и точки перегиба. результаты запишем в виде таблицы: x | (-∞;e) | e | (e;+∞) | f'(x) | + | | - | f''(x)| - | | + | f(x) | ↗ |max| ↘ |
1) D(y)=R 2) y'(x)=-3x^2+3; -3x^2+3=0; x^2=1; x=-1 ili x=1 - + - -11>x f'(-2)=-3*(-2)^2+3=-9; -9<0 убывает возраст убывает x=-1-точка минимума; f(-1)=-(-1)^3+3*(-1)+5=1-3+5=3 (-1;3) x=1-точка максимума; f(1)=-1+3+5=7; (1;7) 3) x=0; y=5 (0;5) Для точности построения зададим таблицу х |-2 | -1/2| 2 | 3 | f(-2)=-(-2)^3+3*(-2)+5=8-6+5=7 y| 7 | 3,6 | 3 | -13| f(-1/2)=1/8-3/2+5=(1-12+40)/8=29/8≈3,6 Проставьте все точки на коорд. плоскости! Строим : график чертим сначала сверху вниз до точки (-1;3) потом через неё -вверх, через (0;5) до (1;7) и опять вниз
х = -25