М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
relax217
relax217
25.03.2023 11:16 •  Алгебра

Найдите координаты точек которую пересекаются .
1)парабола заданной формулой y=x^2-6x+5 и прямая заданной формулой y=3x-3
2)окружность заданная формулой x^2+y^2=16 и прямая заданной формулой y=x+4

👇
Открыть все ответы
Ответ:
pomogitepz3
pomogitepz3
25.03.2023

Объяснение:

1)И з условия мы видим, что a_{1}=-30,тогда разность будет равна

d=-28-(-30)=2

Теперь по формуле

a_{n}=a_{1}+d(n-1)

a_{28}=-30+2*27=24

2)Сумма=2*(1-4^5)/1-4=2*(-1023)/(-3)=682

b1=2

q=4 ( b2:b1=8:2=4)

n=5( количество членов прогрессии)

3)b_n=3*2

b_n=6

и тогда очевидно 384 не является членом последовательности

если же имелась в виду геометрическая прогрессия

b_n=3*2^n

3*2^n=384

2^n=384:3

2^n=128

2^n=2^7

n=7

тогда да является ее 7-ым членом

4)a_{2}+a_{4}=14\\
a_{7}-a_{3}=12\\
\\
2a_{1}+4d=14\\
a_{1}+6d-a_{1}-2d=12\\
\\
a{1}+2d=7\\
4d=12\\
d=3\\
a_{1}=1


ответ разность равна 3 , первый  член равен   1

4,6(54 оценок)
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ