как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
Объяснение:
1)И з условия мы видим, что a_{1}=-30,тогда разность будет равна
d=-28-(-30)=2
Теперь по формуле
a_{n}=a_{1}+d(n-1)
a_{28}=-30+2*27=24
2)Сумма=2*(1-4^5)/1-4=2*(-1023)/(-3)=682
b1=2
q=4 ( b2:b1=8:2=4)
n=5( количество членов прогрессии)
3)b_n=3*2
b_n=6
и тогда очевидно 384 не является членом последовательности
если же имелась в виду геометрическая прогрессия
b_n=3*2^n
3*2^n=384
2^n=384:3
2^n=128
2^n=2^7
n=7
тогда да является ее 7-ым членом
4)a_{2}+a_{4}=14\\ a_{7}-a_{3}=12\\ \\ 2a_{1}+4d=14\\ a_{1}+6d-a_{1}-2d=12\\ \\ a{1}+2d=7\\ 4d=12\\ d=3\\ a_{1}=1
ответ разность равна 3 , первый член равен 1